已知命题,则 ( )
A. B.
C. D.
设集合,则
等于 ( )
A.2 B.3 C.4 D.6
(本题满分13分)
已知函数,在点
处的切线方程为
(1)求函数的解析式;
(2)若对于区间上任意两个自变量的值
,都有
,求实数
的最小值。
(3)若过点,可作曲线
的三条切线,求实数
的取值范围。
(本题满分14分)
已知椭圆的离心率为
,长轴长为
,直线
交椭圆于不同的两点A、B。
(1)求椭圆的方程;
(2)求的值(O点为坐标原点);
(3)若坐标原点O到直线的距离为
,求
面积的最大值。
(本题满分13分)
在数列中,
(1)求的值;
(2)证明:数列是等比数列,并求
的通项公式;
(3)求数列。
(本题满分14分)
如图,已知直三棱柱ABC—A1B1C1,。E、F分别是棱CC1、AB中点。
(1)求证:;
(2)求四棱锥A—ECBB1的体积;
(3)判断直线CF和平面AEB1的位置关系,并加
以证明。