在对口扶贫活动中,为了尽快脱贫(无债务)致富,企业甲将经营状态良好的某种消费品专卖店以5.8万元的优惠价格转让给了尚有5万元无息贷款没有偿还的小型残疾人企业乙,并约定从该店经营的利润中,在保证企业乙的全体职工每月最低生活费的开支3600元后,逐步偿还转让费(不计息),在甲提供资料中:①这种消费品的进价每件14元;②该店月销量Q(百件)与销售单价P(元/件)的关系如右图所示;③该店每月需各种开支2000元。
(1)写出月销量Q(百件)与销售单价P(元/件)的关系,并求该店的月利润L(元)关于销售单价P(元/件)的函数关系式(该店的月利润=月销售利润-该店每月支出);
|
(3)若企业乙只依靠该店,最早可望在多少年后脱贫(无债务)?
已知函数,且
。
(1)求的值;
(2)试判断是否存在正数,使函数
在区间
上的值域为
.若存在,求出这个
的值;若不存在,说明理由.
.
函数的定义域为
(
为实数).
(1)当时,求函数
的值域;
(2)若函数在定义域上是减函数,求
的取值范围;
已知全集,集合
,集合
,已知
,
(1)求,
; (2)若
,求实数
的取值范围.
函数在区间
,
上的值域为[0,1],则
的最小值为 .
已知是定义在R上的奇函数,若
的最小正周期为3,且
,则m的取值范围是
.