一款手游,页面上有一系列的伪装,其中隐藏了4个宝藏.如果你在规定的时间内找到了这4个宝藏,将会弹出下一个页面,这个页面仍隐藏了2个宝藏,若能在规定的时间内找到这2个宝藏,那么闯关成功,否则闯关失败,结束游戏;如果你在规定的时间内找到了3个宝藏,仍会弹出下一个页面,但这个页面隐藏了4个宝藏,若能在规定的时间内找到这4个宝藏,那么闯关成功,否则闯关失败,结束游戏;其它情况下,不会弹出下一个页面,闯关失败,并结束游戏.
假定你找到任何一个宝藏的概率为,且能否找到其它宝藏相互独立..
(1)求闯关成功的概率;
(2)假定你付1个Q币游戏才能开始,能进入下一个页面就能获得2个Q币的奖励,闯关成功还能获得另外4个Q币的奖励,闯关失败没有额外的奖励.求一局游戏结束,收益的Q币个数X的数学期望(收益=收入-支出).
如图,在正三棱柱中,E是
的中点.
(1)求证:截面侧面
;
(2)若,求
到平面
的距离
已知数列满足
,且
,
.
(1)求证:数列是等比数列,并求数列
的通项公式;
(2)记,求数列
的前n项和
.
设圆锥的内切球(球面与圆锥的侧面以及底面都相切)的半径为1,那么该圆锥体积的最小值为_______.
平面直角坐标系xOy中,双曲线的渐近线与抛物线
交于点O,A,B,且
的垂心为
的焦点,则
的离心率为______;如果
与
在第一象限内有且只有一个公共点,且
,那么
的方程为____________.
在中,
,其中a,b,c分别为内角A,B,C的对边,则角A的大小为______.