设空间两直线、
满足
(空集),则直线
、
的位置关系为________
关于的方程
的解为
________
等差数列首项和公差都是
,记
的前n项和为
,等比数列
各项均为正数,公比为q,记
的前n项和为
:
(1)写出构成的集合A;
(2)若将中的整数项按从小到大的顺序构成数列
,求
的一个通项公式;
(3)若q为正整数,问是否存在大于1的正整数k,使得同时为(1)中集合A的元素?若存在,写出所有符合条件的
的通项公式,若不存在,请说明理由.
在平面直角坐标系xOy中,曲线C上的点到点
的距离与它到直线
的距离之比为
,圆O的方程为
,曲线C与x轴的正半轴的交点为A,过原点O且异于坐标轴的直线与曲线C交于B,C两点,直线AB与圆O的另一交点为P,直线PD与圆O的另一交点为Q,其中
,设直线AB,AC的斜率分别为
;
(1)求曲线C的方程,并证明到点M的距离
;
(2)求的值;
(3)记直线PQ,BC的斜率分别为、
,是否存在常数
,使得
?若存在,求
的值,若不存在,说明理由.
对于定义在上的函数
,若函数
满足:①在区间
上单调递减;②存在常数p,使其值域为
,则称函数
为
的“渐近函数”;
(1)证明:函数是函数
的渐近函数,并求此时实数p的值;
(2)若函数,证明:当
时,
不是
的渐近函数.
已知复数是方程
的解,且
,若
(其中
、
为实数,
为虚数单位,
表示
的虚部)
(1)求复数的模;
(2)若不等式在
上恒成立,求实数
的取值范围