已知椭圆,离心率为
,直线
恒过
的一个焦点
.
(1)求的标准方程;
(2)设为坐标原点,四边形
的顶点均在
上,
交于
,且
,若直线
的倾斜角的余弦值为
,求直线
与
轴交点的坐标.
每年9月第三周是国家网络安全宣传周.某学校为调查本校学生对网络安全知识的了解情况,组织了《网络信息辨析测试》活动,并随机抽取50人的测试成绩绘制了频率分布直方图如图所示:
(1)某学生的测试成绩是75分,你觉得该同学的测试成绩低不低?说明理由;
(2)将成绩在内定义为“合格”;成绩在
内定义为“不合格”.①请将下面的
列联表补充完整; ②是否有90%的把认为网络安全知识的掌握情况与性别有关?说明你的理由;
| 合格 | 不合格 | 合计 |
男生 | 26 |
|
|
女生 |
| 6 |
|
合计 |
|
|
|
(3)在(2)的前提下,对50人按是否合格,利用分层抽样的方法抽取5人,再从5人中随机抽取2人,求恰好2人都合格的概率.附:
0.100 | 0.050 | 0.010 | 0.001 | |
2.706 | 3.841 | 6.635 | 10.828 |
.
的内角
的对边分别为
,若
.
(1)求角;
(2)若的周长为
,求
的面积.
如图,在四棱锥中,
平面
,
,
,
.
(1)求证:平面平面
;
(2)若三棱锥的体积为
,求
的长.
已知数列的各项均为正数,
,则
_______;
的前10项和
_________.
函数的图象在
处的切线被圆
截得弦长的取值范围为
,则实数
的取值范围是________.