设a=(1,-2),b=(-3,4),c=(3,2),则(a+2b)·c=
A.(-15,12) B.0 C.-3 D.-11
(本小题满分14分)
已知函数,
.
(1)当时,求
的单调区间;
(2)对任意正数,证明:
。
(本小题满分12分)
设点在直线
上,过点
作双曲线
的两条切线
,切点为
,定点
。
(1)求证:三点共线;
(2)过点作直线
的垂线,垂足为
,试求
的重心
所在曲线方程。
(本小题满分12分)
如图,正三棱锥的三条侧棱
、
、
两两垂直,且长度均为2.
、
分别是
、
的中点,
是
的中点,过
作平面与侧棱
、
、
或其延长线分别相交于
、
、
,已知
。
(1)求证:⊥平面
;
(2)求二面角的大小。
(本小题满分12分)
数列为等差数列,
为正整数,其前
项和为
,数列
为等比数列,且
,数列
是公比为64的等比数列,
。
(1)求;
(2)求证。
(本小题满分12分)
某柑桔基地因冰雪灾害,使得果林严重受损,为此有关专家提出两种拯救果林的方案,每种方案都需分两年实施;若实施方案一,预计当年可以使柑桔产量恢复到灾前的1.0倍、0.9倍、0.8倍的概率分别是0.3、0.3、0.4;第二年可以使柑桔产量为上一年产量的1.25倍、1.0倍的概率分别是0.5、0.5. 若实施方案二,预计当年可以使柑桔产量达到灾前的1.2倍、1.0倍、0.8倍的概率分别是0.2、0.3、0.5; 第二年可以使柑桔产量为上一年产量的1.2倍、1.0倍的概率分别是0.4、0.6. 实施每种方案,第二年与第一年相互独立。令表示方案
实施两年后柑桔产量达到灾前产量的倍数。
(1)写出的分布列;
(2)实施哪种方案,两年后柑桔产量超过灾前产量的概率更大?
(3)不管哪种方案,如果实施两年后柑桔产量达不到灾前产量,预计可带来效益10万元;两年后柑桔产量恰好达到灾前产量,预计可带来效益15万元;柑桔产量超过灾前产量,预计可带来效益20万元;问实施哪种方案所带来的平均效益更大?