设纯虚数z满足 (其中i为虚数单位),则实数a等于
(A) 1 (B) -1 (C) 2 (D) -2
已知集合,
,全集U=R,则下列结论正确的是
(A)
(B)
(C)
(D)
已知函数(
且
).
(Ⅰ)当时,求证:函数
在
上单调递增;
(Ⅱ)若函数有三个零点,求t的值;
(Ⅲ)若存在x1,x2∈[﹣1,1],使得,试求a的取值范围.
注:e为自然对数的底数。
已知A(1,1)是椭圆(
)
上一点,F1,F2是椭圆上的两焦点,且满足
.
(I)求椭圆方程;
(Ⅱ)设C,D是椭圆上任两点,且直线AC,AD的斜率分别为 ,若存在常数
使
/,求直线CD的斜率.
在直角梯形A1A2A3D中,A1A2⊥A1D,A1A2⊥A2A3,且B,C分别是边A1A2,A2A3上的一点,沿线段BC,CD,DB分别将△BCA2,△CDA3,△DBA1翻折上去恰好使A1,A2,A3重合于一点A。
(Ⅰ)求证:AB⊥CD;
(Ⅱ)已知A1D=10,A1A2=8,求二面角A-BC-D的余弦值。
已知数列 、
满足
,
,
。
(Ⅰ)求数列的通项公式;
(Ⅱ)若数列的前
项和为
,设
,求证:
。