设,则
的大小关系为 ( )
A. B.
C.
D.以上都有可能
不等式的解集为 ( )
A. B.
C. D.
已知数列的前
项和为
,点
在直线
上;数列
满足
,且
,它的前9项和为153.
(1)求数列、
的通项公式;
(2)设,数列
的前
项和为
,求使不等式
对一切
都成立的最大正整数
的值;
(3)设,是否存在
,使得
成立?若存在,求出
的值;若不存在,请说明理由.
某工厂生产甲、乙两种产品,已知生产每吨甲、乙两种产品所需煤、电力、劳动力、获得利润及每天资源限额(量大供应量)如下表所示:
消耗量 资源 |
甲产品(每吨) |
乙产品(每吨) |
资源限额(每天) |
煤(t) |
9 |
4 |
360 |
电力(kw·h) |
4 |
5 |
200 |
劳动力(个) |
3 |
10 |
300 |
利润(万元) |
6 |
12 |
|
问:每天生产甲、乙两种产品各多少吨,获得利润总额最大?
已知圆,直线
(1)证明直线恒过一个定点
,并求出
的坐标;
(2)证明不论取何值时,直线
与圆
相交于两个不同的点;
(3)求直线被圆截得线段的最短长度及此时
的方程.
如图,在四棱锥中,底面
是边长为
的正方形,侧面
,且
,若
、
分别为
、
的中点.
(1)求证:∥平面
;
(2)求证:
平面
.