下列每组中的两个图形,是全等图形的为( )
A. B.
C. D.
模型发现:
同学们知道,三角形的两边之和大于第三边,即如图1,在△ABC中,AB+AC>BC.对于图1,若把点C看作是线段AB外一动点,且AB=c,AC=b,则线段BC的长会因为点C的位置的不同而发生变化.
因为AB、AC的长度固定,所以当∠BAC越大时,BC边越长.
特别的,当点C位于 时,线段BC的长取得最大值,且最大值为 (用含b,c的式子表示)(直接填空)
模型应用:
点C为线段AB外一动点,且AB=3,AC=2,如图2所示,分别以AC,BC为边,作等边三角形ACD和等边三角形BCE,连接BD,AE.
(1)求证:BD=AE.
(2)线段AE长的最大值为 .
模型拓展:
如图3,在平面直角坐标系中,点A是y轴正半轴上的一动点,点B是x轴正半轴上的一动点,且AB=8.若AC⊥AB,AC=3,试求OC长的最大值.
某校绿化校园,计划在校园内种植A,B两种树木,需要购买这两种树苗500棵.A,B两种树苗的相关信息如表:
| 单价(元/棵) | 成活率 | 植树费(元/棵) |
A | 200 | 80% | 20 |
B | 280 | 90% | 20 |
设购买A种树苗x棵,种植这批树苗的总费用(树苗费用与种树费之和)为y元,解答下列问题:
(1)写出y(元)与x(棵)之间的函数关系式;
(2)若这批树苗种植后成活了420棵,则种植这批树苗的总费用需要多少元?
(3)由于学校资金有限,种植树苗的总费用不能超过130000元,则至少要购买相对便宜的A种树苗多少棵?
如图,△ABC是等腰直角三角形,AB=AC,D是斜边BC的中点,E.F分别是AB、AC边上的点,且DE⊥DF,
(1)求证:CF=AE;
(2)若BE=8,CF=6,求线段EF的长.
在杭州西湖风景游船处,如图,在离水面高度为5m的岸上,有人用绳子拉船靠岸,开始时绳子BC的长为13m,此人以0.5m/s的速度收绳.10s后船移动到点D的位置,问船向岸边移动了多少m?(假设绳子是直的,结果保留根号)
直线y=2x﹣2与x轴交于点A,与y轴交于点B.
(1)求点A,B的坐标;
(2)画出直线AB,并求△OAB的面积;
(3)点C在x轴上,且AC=AB,直接写出点C坐标.