如图,若是正数,直线
:
与
轴交于点
;直线
:
与
轴交于点
;抛物线
:
的顶点为
,且
与
轴右交点为
.
(1)若,求
的值,并求此时
的对称轴与
的交点坐标;
(2)当点在
下方时,求点
与
距离的最大值;
(3)设,点
,
,
分别在
,
和
上,且
是
,
的平均数,求点
与点
间的距离;
(4)在和
所围成的封闭图形的边界上,把横、纵坐标都是整数的点称为“美点”,分别直接写出
和
时“美点”的个数.
已知二次函数图象的顶点在原点,对称轴为
轴.一次函数
的图象与二次函数的图象交于
,
两点(
在
的左侧),且
点坐标为
.平行于
轴的直线
过
点.
求一次函数与二次函数的解析式;
判断以线段
为直径的圆与直线
的位置关系,并给出证明;
把二次函数的图象向右平移
个单位,再向下平移
个单位
,二次函数的图象与
轴交于
,
两点,一次函数图象交
轴于
点.当
为何值时,过
,
,
三点的圆的面积最小?最小面积是多少?
如图,在中,
为
的中点,以
为直径
的分别交
于点
两点,过点
作
于点
.
试判断
与
的位置关系,并说明理由.
若
求
的长.
如图,一次函数(
为常数,且
)的图像与反比例函数
的图像交于
,
两点.
(1)求一次函数的表达式;
(2)若将直线向下平移
个单位长度后与反比例函数的图像有且只有一个公共点,求
的值.
每个小方格都是边长为1个单位长度的正方形,在建立平面直角坐标系后,△ABC的顶点均在格点上.
(1)把△ABC向上平移5个单位后得到对应的△A1B1C1,画出△A1B1C1;
(2)画出与△ABC关于原点O对称的△A2B2C2;
(3)△A1B1C1与△A2B2C2关于某个点对称,则这个点的坐标为 .
某商场为了吸引顾客,设立了一个可以自由转动的转盘,如图所示,并规定:顾客消费200元(含200元)以上,就能获得一次转动转盘的机会,如果转盘停止后,指针正好对准九折、八折、七折区域,顾客就可以获得此项优惠,如果指针恰好在分割线上时,则需重新转动转盘.
(1)某顾客正好消费220元,他转一次转盘,他获得九折、八折、七折优惠的概率分别是多少?
(2)某顾客消费中获得了转动一次转盘的机会,实际付费168元,请问他消费所购物品的原价应为多少元.