满分5 > 初中数学试题 >

如图,已知等腰直角△ABC,∠ACB=90°,CA=CB,以BC为边向外作等边△...

如图,已知等腰直角△ABC,∠ACB=90°,CA=CB,以BC为边向外作等边CBA,连接AD,过点C作ACB的角平分线与AD交于点E,连接BE.

(1)若AE=2,求CE的长度;

(2)以AB为边向下作△AFB,∠AFB=60°,连接FE,求证:FA+FB=FE.

 

(1) (2)FA+FB=FE 【解析】试题(1)延长CE交AB于G,首先判断出△CAG是等腰直角三角形,然后找到∠EAB=∠CAB﹣∠CAD=30°,分别求出CG,EG即可解决问题; (2)延长FB到H,使得BH=AF,连接EH.作EI⊥BF于I.由△ACE≌△BCE,推出AE=BE,推出∠EAB=∠EBC=30°,由△AFE≌△BHE,推出∠AFE=∠BHE,EF=EH,可得∠EFB=∠EBH=∠AFE=30°,又EI⊥FH,故在Rt△FEI中,∠EFI=30°,从而得出FI=FE,可得FA+FB=FE. 试题解析:【解析】 (1)延长CE交AB于G. ∵△BAC是等腰直角三角形,CE平分∠ACB,∴CG⊥AB,∴∠AGC=90°. ∵CA=CB,∠ACB=90°,∴∠CAB=45°,∴△CAG是等腰直角三角形. ∵△BCD是等边三角形,∴BC=CD=AC,∠BCD=60°,∴∠CAD=∠CDA,∴∠ACD=∠ACB+∠BCD=150°,∴∠CAD=∠CDA=15°,∴∠EAB=∠CAB﹣∠CAD=30°. 在Rt△AEG中,∠EAG=30°,AE=2,∴AE=,EG=1. ∵CG=AG=,∴CE=CG﹣EG=﹣1. (2)延长FB到H,使得BH=AF,连接EH.作EI⊥BF于I. 由(1)可知:AC=BC,CE平分∠ACB,∴∠ACE=∠BCE. ∵CE=CE,∴△ACE≌△BCE,∴AE=BE,∴∠EAB=∠EBC=30°. 在△AFB中,∠AFB=60°,∴∠FAB+∠FBA=120°,∴∠FAE=∠EAB+∠FAB=30°+∠FAB,∠EBH=180°﹣∠EBA﹣∠ABF=150°﹣(120°﹣∠ABF)=30°+∠FAB,∴∠EBH=∠FAE,∴△AFE≌△BHE,∴∠AFE=∠BHE,EF=EH,∴∠EFB=∠EBH=∠AFE=30°. ∵EI⊥FH,∴EI=IH,在Rt△FEI中,∠EFI=30°,∴FI= FE,∴FH=BH+FB=FE,∴FA+FB=FE.
复制答案
考点分析:
相关试题推荐

穿楼而过的轻轨、《千与千寻》现实版洪崖洞、空中巴士长江索道……,“3D魔幻城”吸引着海量游客前来重庆打卡.2018年的清明节和“五一”节,洪崖洞入围全球旅游热门目的地榜单,排名仅次于故宫.位于洪崖洞的重庆知名火锅小天鹅火锅在节日期间每天也人满为患,其中鸳鸯火锅和红汤火锅最受游客青睐.在清明节期间,前来就餐选择鸳鸯火锅和红汤火锅的游客共有2200名,鸳鸯火锅和红汤火锅的人均消费分别为130元和120元.

(1)清明节期间,若选择红汤火锅的人数不超过鸳鸯火锅人数的1.5倍.求至少有多少人选择鸳鸯火锅?

(2)“五一”节期间,因天气渐热的原因,前来就餐的游客人数有所下降,与(1)问中选择鸳鸯火锅的人数最少时相比,选择两种火锅的人数均下降了a%;人均消费与清明节期间相比均有所上升,其中鸳鸯火锅的人均消费上涨了a%,红汤火锅的人均消费上涨了%,最终“五一”节期间两种火锅的总销售额与(1)问中选择鸳鸯火锅的人数最少时的两种火锅的总销售额持平,求a的值.

 

查看答案

如图,已知直线AB经过x轴上的点A(2,0),且与抛物线相交于B、C两点,已知B点坐标为(1,1) .

(1)求直线和抛物线的解析式;

(2)如果D为抛物线上一点,使得△AOD与△OBC的面积相等,求D点坐标。

 

查看答案

关于的一元二次方程,其中分别为三边的长.

如果方程有两个相等的实数根,试判断的形状,并说明理由;

已知,求该一元二次方程的根.

 

查看答案

已知二次函数y=ax2+bx+3的图象经过点 (-3,0),(2,-5).

(1)试确定此二次函数的解析式;

(2)请你判断点P(-2,3)是否在这个二次函数的图象上?

 

查看答案

解下列方程:

(1)(2x+1)2=3(2x+1);      (2)3x2-10x+6=0.

 

查看答案
试题属性

Copyright @ 2008-2019 满分5 学习网 ManFen5.COM. All Rights Reserved.