如图,抛物线y=﹣x2+bx+c与x轴交于(2,0)、(1,0),与y轴交于C,直线l1经过点C且平行于x轴,与抛物线的另一个交点为D,将直线l1向下平移t个单位得到直线l2,l2与抛物线交于A、B两点.
(1)求抛物线解析式及点C的坐标;
(2)当t=2时,探究△ABC的形状,并说明理由;
(3)在(2)的条件下,点M(m,0)在x轴上自由运动,过M作MN⊥x轴,交直线BC于P,交抛物线于N,若三个点M、N、P中恰有一个点是其他两个点连线段的中点(三点重合除外),则称M、N、P三点为“共谐点”,请直接写出使得M、P、N三点为“共谐点”的m的值.
(1)如图1,等边三角形ABC的边长为4,两顶点B、C分别在y轴的正半轴和x轴的正半轴上运动,显然,当OA⊥BC于点D时,顶点A到原点O的距离最大,试求出此时线段OA的长.
(2)如图2,在Rt△ACB中,∠ACB=90°,AC=3,BC=4,两顶点B、C分别在x轴的正半制和y轴的正半轴上运动,求出顶点A到原点O的最大距离.
(3)如图3,正六边形ABCDEF的边长为4,顶点B、C分别在x轴正半轴和y轴正半轴上运动,直接写出顶点E到原点O的距离的最大值和最小值.
如图,在平面直角坐标系中,直线y=﹣x+
与x轴、y轴分别交于点B、A,与直线y=
相交于点C.动点P从O出发在x轴上以每秒5个单位长度的速度向B匀速运动,点Q从C出发在OC上以每秒4个单位长度的速度,向O匀速运动,运动时间为t秒(0<t<2).
(1)直接写出点C坐标及OC、BC长;
(2)连接PQ,若△OPQ与△OBC相似,求t的值;
(3)连接CP、BQ,若CP⊥BQ,直接写出点P坐标.
如图AB是⊙O的直径,CD是⊙O的切线,切点为D,CD与AB的延长线交于点E,∠ADC=60°.
(1)求证:△ADE是等腰三角形;
(2)若BE=2,求图中阴影部分面积(结果保留π).
如图,△ABC中,D为BC边上的一点,若∠B=36°,AB=AC=BD=2.
(1)求CD的长;
(2)利用此图求sin18°的值.
A、B两地相距160千米,甲、乙两车分别从A、B两地同时出发,匀速前行至B、A两地,若乙车的速度是甲车速度的倍,乙车比甲车早到24分钟,求甲车的速度.