如图,抛物线y=nx2﹣3nx﹣4n(n<0)与x轴交于B、C两点(点B在点C的左侧),且抛物线与y轴交于点A.
(1)点B的坐标为 ,点C的坐标为 ;
(2)若∠BAC=90°,求抛物线的解析式.
(3)点M是(2)中抛物线上的动点,点N是其对称轴上的动点,是否存在这样的点M、N,使得以A、C、M、N为顶点的四边形是平行四边形?若存在,请直接写出点M的坐标;若不存在,请说明理由.
(1)操作与探究:如图,矩形纸片ABCD中,AB=8,将纸片折叠,使顶点B落在边AD的E点上,折痕的一端G点在边BC上,BG=10.
①第一次折叠:当折痕的另一端点F在AB边上时,如图1,求折痕GF的长;
②第二次折叠:当折痕的另一端点F在AD边上时,如图2,证明四边形BGEF为菱形,并求出折痕GF的长.
(2)拓展延伸:通过操作探究发现在矩形纸片ABCD中,AB=5,AD=13.如图3所示,折叠纸片,使点A落在BC边上的A′处,折痕为PQ.当点A′在BC边上移动时,折痕的端点P,Q也随之移动.若限定点P,Q分别在AB,AD边上移动,则点A′在BC边上可移动的最大距离是 .
阅读理【解析】
反比例函数y=(k>0)第一象限内的图象如图1所示,点P、R是双曲线上不同的两点,过点P、R分别做PA⊥y轴于点A,RC⊥x轴于点C,两垂线交点为B.
(1)问题提出:线段PB:PA与BR:RC有怎样的关系?
问题解决:设点PA=n,PB=m,则点P的坐标为(n,),点R的坐标为(m+n,
),AO=BC=
,RC=
,BR=
,
则BR:RC=,
PB:PA=,
∴PB:PA=BR:RC.
问题应用:
(2)利用上面的结论解决问题:
①如图1,如果BR=6,CR=3,AP=4,BP= .
②如图2,如果直线PR的关系式y2=﹣x+3,与x轴交于点D,与y轴交于点E,若ED=3PR,求出k的值.
近几年来,为了缓减环境污染,某区加大了对煤改电的投资力度,该区居民在2015年有7500户完成煤改电,2017年有10800户完成了煤改电.
(1)求该区2015年至2017年完成煤改电户数的年平均增长率;
(2)2018年该区计划要完成煤改电的户数比2017年要有所增长,但增长率不超过15%,请求出2018年最多有多少户能完成煤改电.
如图1是一种折叠式可调节的鱼竿支架的示意图,AE是地插,用来将支架固定在地面上,支架AB可绕A点前后转动,用来调节AB与地面的夹角,支架CD可绕AB上定点C前后转动,用来调节CD与AB的夹角,支架CD带有伸缩调节长度的伸缩功能,已知BC=60cm.
(1)若支架AB与地面的夹角∠BAF=35°,支架CD与钓鱼竿DB垂直,钓鱼竿DB与地面AF平行,则支架CD的长度为 cm(精确到0.1cm);(参考数据:sin35°≈0.57,cos35°≈0.82,tan35°≈0.70).
(2)如图2,保持(1)中支架AB与地面的夹角不变,调节支架CD与AB的夹角,使得∠DCB=85°,若要使钓鱼竿DB与地面AF仍然保持平行,则支架CD的长度应该调节为多少?(结果保留根号)
某服装厂里有许多剩余的三角形边角料,找出一块△ABC,测得∠C=90°(如图),现要从这块三角形上剪出一个半圆O,做成玩具,要求:使半圆O与三角形的两边AB、AC相切,切点分别为D、C,且与BC交于点E.
(1)在图中设计出符合要求的方案示意图.(要求:尺规作图,不写作法,保留作图痕迹).
(2)Rt△ABC中,AC=3,AB=5,连接AO,求出AO的长度.