满分5 > 初中数学试题 >

已知:如图,在平行四边形ABCD中,E、F分别为边AB、CD的中点,BD是对角线...

已知:如图,在平行四边形ABCD中,E、F分别为边AB、CD的中点,BD是对角线,AGDBCB的延长线于G.

(1)求证:△ADE≌△CBF;

(2)若四边形BEDF是菱形,则四边形AGBD是什么特殊四边形?并证明你的结论.

 

(1)证明:∵四边形ABCD是平行四边形, ∴∠4=∠C,AD=CB,AB=CD. ∵点E、F分别是AB、CD的中点, ∴AE=AB,CF=CD. ∴AE=CF. ∴△ADE≌△CBF(SAS). (2)【解析】 当四边形BEDF是菱形时,四边形AGBD是矩形. 证明:∵四边形ABCD是平行四边形, ∴AD∥BC. ∵AG∥BD, ∴四边形AGBD是平行四边形. ∵四边形BEDF是菱形, ∴DE=BE. ∵AE=BE, ∴AE=BE=DE. ∴∠1=∠2,∠3=∠4. ∵∠1+∠2+∠3+∠4=180°, ∴2∠2+2∠3=180°. ∴∠2+∠3=90°. 即∠ADB=90°. ∴四边形AGBD是矩形. 【解析】 (1)在证明全等时常根据已知条件,分析还缺什么条件,然后用(SAS,ASA,SSS)来证明全等; (2)先由菱形的性质得出AE=BE=DE,再通过角之间的关系求出∠2+∠3=90°即∠ADB=90°,所以判定四边形AGBD是矩形. 解:证明:∵四边形是平行四边形, ∴,,. ∵点、分别是、的中点, ∴,. ∴. 在和中, , ∴. 【解析】 当四边形是菱形时,四边形是矩形. 证明:∵四边形是平行四边形, ∴. ∵, ∴四边形是平行四边形. ∵四边形是菱形, ∴. ∵, ∴. ∴,. ∵, ∴. ∴. 即. ∴四边形是矩形.
复制答案
考点分析:
相关试题推荐

如图,在菱形中,对角线相交于点,过点作一条直线分别交的延长线于点,连接

求证:四边形是平行四边形;

,垂足为,求的值.

 

查看答案

在矩形中,将点翻折到对角线上的点处,折痕于点.将点翻折到对角线上的点处,折痕于点

求证:四边形为平行四边形;

若四边形为菱形,且,求的长.

 

查看答案

如图,已知菱形的对角线相交于点,延长至点,使,连接

求证:

,求的大小.

 

查看答案

11·湖州)(本小题10分)

如图,已知EF分别是□ABCD的边BCAD上的点,且BE=DF

求证:四边形AECF是平行四边形;

BC=10∠BAC=90°,且四边形AECF是菱形,求BE的长。

 

查看答案

已知:如图,在菱形中,为边的中点,与对角线交于点,过于点

,求的长;

求证:

 

查看答案
试题属性

Copyright @ 2008-2019 满分5 学习网 ManFen5.COM. All Rights Reserved.