满分5 > 初中数学试题 >

如图,△ABC内接于⊙O,BD为⊙O的直径,BD与AC相交于点H,AC的延长线与...

如图,△ABC内接于⊙O,BD为⊙O的直径,BD与AC相交于点H,AC的延长线与过点B的直线相交于点E,且∠A=∠EBC.

(1)求证:BE是⊙O的切线;

(2)已知CG∥EB,且CG与BD、BA分别相交于点F、G,若BG•BA=48,FG=,DF=2BF,求AH的值.

 

(1)证明见解析;(2). 【解析】 (1)欲证明BE是⊙O的切线,只要证明∠EBD=90°. (2)由△ABC∽△CBG,得求出BC,再由△BFC∽△BCD,得=BF•BD求出BF,CF,CG,GB,再通过计算发现CG=AG,进而可以证明CH=CB,求出AC即可解决问题. (1)连接CD, ∵BD是直径, ∴∠BCD=90°,即∠D+∠CBD=90°, ∵∠A=∠D,∠A=∠EBC, ∴∠CBD+∠EBC=90°, ∴BE⊥BD, ∴BE是⊙O切线. (2)∵CG∥EB, ∴∠BCG=∠EBC, ∴∠A=∠BCG, ∵∠CBG=∠ABC ∴△ABC∽△CBG, ∴,即=BG•BA=48, ∴BC=, ∵CG∥EB, ∴CF⊥BD, ∴△BFC∽△BCD, ∴=BF•BD, ∵DF=2BF, ∴BF=4, 在RT△BCF中,CF==, ∴CG=CF+FG=, 在RT△BFG中,BG==, ∵BG•BA=48, ∴BA=,即AG=, ∴CG=AG, ∴∠A=∠ACG=∠BCG,∠CFH=∠CFB=90°, ∴∠CHF=∠CBF,∴CH=CB=, ∵△ABC∽△CBG, ∴, ∴AC==, ∴AH=AC﹣CH=.
复制答案
考点分析:
相关试题推荐

如图,一次函数y=kx+b(k<0)与反比例函数的图象相交于A、B两点,一次函数的图象与y轴相交于点C,已知点A(4,1)

(1)求反比例函数的解析式;

(2)连接OB(O是坐标原点),若△BOC的面积为3,求该一次函数的解析式.

 

查看答案

如图,为了测量出楼房AC的高度,从距离楼底C处米的点D(点D与楼底C在同一水平面上)出发,沿斜面坡度为i=1:的斜坡DB前进30米到达点B,在点B处测得楼顶A的仰角为53°,求楼房AC的高度(参考数据:sin53°≈0.8,cos53°≈0.6,tan53°≈,计算结果用根号表示,不取近似值).

 

查看答案

某商店购买60件A商品和30件B商品共用了1080元,购买50件A商品和20件B商品共用了880元.

(1)A、B两种商品的单价分别是多少元?

(2)已知该商店购买B商品的件数比购买A商品的件数的2倍少4件,如果需要购买A、B两种商品的总件数不少于32件,且该商店购买的A、B两种商品的总费用不超过296元,那么该商店有哪几种购买方案?

 

查看答案

为了解某地区七年级学生对新闻、体育、动画、娱乐、戏曲五类电视节目的喜爱情况,从该地区随机抽取部分七年级学生作为样本,采用问卷调查的方法收集数据(参与问卷调查的每名同学只能选择其中一类节目),并调查得到的数据用下面的表和扇形图来表示(表、图都没制作完成)

根据表、图提供的信息,解决以下问题:

(1)计算出表中a、b的值;

(2)求扇形统计图中表示“动画”部分所对应的扇形的圆心角度数;

(3)若该地区七年级学生共有47500人,试估计该地区七年级学生中喜爱“新闻”类电视节目的学生有多少人?

 

查看答案

化简:

 

查看答案
试题属性

Copyright @ 2008-2019 满分5 学习网 ManFen5.COM. All Rights Reserved.