满分5 > 初中数学试题 >

如图1,二次函数y=ax2﹣2ax﹣3a(a<0)的图象与x轴交于A、B两点(点...

如图1,二次函数yax22ax3aa0)的图象与x轴交于AB两点(点A在点B的右侧),与y轴的正半轴交于点C,顶点为D

1)求顶点D的坐标(用含a的代数式表示);

2)若以AD为直径的圆经过点C

①求抛物线的函数关系式;

②如图2,点Ey轴负半轴上一点,连接BE,将△OBE绕平面内某一点旋转180°,得到△PMN(点PMN分别和点OBE对应),并且点MN都在抛物线上,作MFx轴于点F,若线段MFBF12,求点MN的坐标;

③点Q在抛物线的对称轴上,以Q为圆心的圆过AB两点,并且和直线CD相切,如图3,求点Q的坐标.

 

(1)(1,﹣4a);(2)①y=﹣x2+2x+3;②M(,)、N(,);③点Q的坐标为(1,﹣4+2)或(1,﹣4﹣2). 【解析】 分析: (1)将二次函数的解析式进行配方即可得到顶点D的坐标. (2)①以AD为直径的圆经过点C,即点C在以AD为直径的圆的圆周上,依据圆周角定理不难得出△ACD是个直角三角形,且∠ACD=90°,A点坐标可得,而C、D的坐标可由a表达出来,在得出AC、CD、AD的长度表达式后,依据勾股定理列等式即可求出a的值. ②将△OBE绕平面内某一点旋转180°得到△PMN,说明了PM正好和x轴平行,且PM=OB=1,所以求M、N的坐标关键是求出点M的坐标;首先根据①的函数解析式设出M点的坐标,然后根据题干条件:BF=2MF作为等量关系进行解答即可. ③设⊙Q与直线CD的切点为G,连接QG,由C、D两点的坐标不难判断出∠CDQ=45°,那么△QGD为等腰直角三角形,即QD ²=2QG ²=2QB ²,设出点Q的坐标,然后用Q点纵坐标表达出QD、QB的长,根据上面的等式列方程即可求出点Q的坐标. 详解: (1)∵y=ax2﹣2ax﹣3a=a(x﹣1)2﹣4a, ∴D(1,﹣4a). (2)①∵以AD为直径的圆经过点C, ∴△ACD为直角三角形,且∠ACD=90°; 由y=ax2﹣2ax﹣3a=a(x﹣3)(x+1)知,A(3,0)、B(﹣1,0)、C(0,﹣3a),则: AC2=9a2+9、CD2=a2+1、AD2=16a2+4 由勾股定理得:AC2+CD2=AD2,即:9a2+9+a2+1=16a2+4, 化简,得:a2=1,由a<0,得:a=﹣1, ②∵a=﹣1, ∴抛物线的解析式:y=﹣x2+2x+3,D(1,4). ∵将△OBE绕平面内某一点旋转180°得到△PMN, ∴PM∥x轴,且PM=OB=1; 设M(x,﹣x2+2x+3),则OF=x,MF=﹣x2+2x+3,BF=OF+OB=x+1; ∵BF=2MF, ∴x+1=2(﹣x2+2x+3),化简,得:2x2﹣3x﹣5=0 解得:x1=﹣1(舍去)、x2=. ∴M(,)、N(,). ③设⊙Q与直线CD的切点为G,连接QG,过C作CH⊥QD于H,如下图: ∵C(0,3)、D(1,4), ∴CH=DH=1,即△CHD是等腰直角三角形, ∴△QGD也是等腰直角三角形,即:QD2=2QG2; 设Q(1,b),则QD=4﹣b,QG2=QB2=b2+4; 得:(4﹣b)2=2(b2+4), 化简,得:b2+8b﹣8=0,解得:b=﹣4±2; 即点Q的坐标为(1,)或(1,).
复制答案
考点分析:
相关试题推荐

如图,已知直线y=﹣2x+4x轴、y轴分别交于点AC,以OAOC为边在第一象限内作长方形OABC

(1)求点AC的坐标;

(2)将△ABC对折,使得点A的与点C重合,折痕交AB于点D,求直线CD的解析式(图);

(3)在坐标平面内,是否存在点P(除点B外),使得△APC与△ABC全等?若存在,请求出所有符合条件的点P的坐标;若不存在,请说明理由.

 

查看答案

A、B两辆汽车同时从相距330千米的甲、乙两地相向而行,s(千米)表示汽车与甲地的距离,t(分)表示汽车行驶的时间,如图,L1,L2分别表示两辆汽车的st的关系.

(1)L1表示哪辆汽车到甲地的距离与行驶时间的关系?

(2)汽车B的速度是多少?

(3)求L1,L2分别表示的两辆汽车的st的关系式.

(4)2小时后,两车相距多少千米?

(5)行驶多长时间后,A、B两车相遇?

 

查看答案

如图,在RtABC 中,∠C=90°,AD是∠BAC的角平分线,以AB上一点O为圆心,AD为弦作⊙O.

(1)尺规作图:作出⊙O,并连接OD(不写作法与证明,保留作图痕迹);

(2)求证:△OBD∽△ABC.

 

查看答案

某校组织一项公益知识竞赛,比赛规定:每个班级由2名男生、2名女生及1名班主任老师组成代表队.但参赛时,每班只能有3名队员上场参赛,班主任老师必须参加,另外2名队员分别在2名男生和2名女生中各随机抽出1名.初三(1)班由甲、乙2名男生和丙、丁2名女生及1名班主任组成了代表队,求恰好抽到由男生甲、女生丙和这位班主任一起上场参赛的概率.(请用画树状图列表列举等方法给出分析过程)

 

查看答案

为使中华传统文化教育更具有实效性,军宁中学开展以我最喜爱的传统文化种类为主题的调查活动,围绕在诗词、国画、对联、书法、戏曲五种传统文化中,你最喜爱哪一种?(必选且只选一种)的问题,在全校范围内随机抽取部分学生进行问卷调查,将调查结果整理后绘制成如图所示的不完整的统计图,请你根据图中提供的信息回答下列问题:

(1)本次调查共抽取了多少名学生?

(2)通过计算补全条形统计图;

(3)若军宁中学共有960名学生,请你估计该中学最喜爱国画的学生有多少名?

 

查看答案
试题属性

Copyright @ 2008-2019 满分5 学习网 ManFen5.COM. All Rights Reserved.