满分5 > 初中数学试题 >

问题背景:我们学习等边三角形时得到直角三角形的一个性质:在直角三角形中,如果一个...

问题背景:我们学习等边三角形时得到直角三角形的一个性质:在直角三角形中,如果一个锐角等于30°,那么它所对的直角边等于斜边的一半.即:如图1,在RtABC中,∠ACB=90°,ABC=30°,则:AC=AB.

探究结论:小明同学对以上结论作了进一步研究.

(1)如图1,连接AB边上中线CE,由于CE=AB,易得结论:①△ACE为等边三角形;②BECE之间的数量关系为  

(2)如图2,点D是边CB上任意一点,连接AD,作等边ADE,且点E在∠ACB的内部,连接BE.试探究线段BEDE之间的数量关系,写出你的猜想并加以证明.

(3)当点D为边CB延长线上任意一点时,在(2)条件的基础上,线段BEDE之间存在怎样的数量关系?请直接写出你的结论  

拓展应用:如图3,在平面直角坐标系xOy中,点A的坐标为(﹣,1),点Bx轴正半轴上的一动点,以AB为边作等边ABC,当C点在第一象限内,且B(2,0)时,求C点的坐标.

 

(1)EC=EB;(2)ED=EB,理由见解析;(3)ED=EB;拓展应用:C(1,2+). 【解析】 探究结论:(1)只要证明△ACE是等边三角形即可解决问题; (2)如图2中,结论:ED=EB.想办法证明EP垂直平分线段AB即可解决问题; (3)结论不变,证明方法类似; 拓展应用:利用(2)中结论,可得CO=CB,设C(1,n),根据OC=CB=AB,构建方程即可解决问题. 探究结论(1),如图1中, ∵∠ACB=90°,∠B=30°, ∴∠A=60°, ∵AC=AB=AE=EB, ∴△ACE是等边三角形, ∴EC=AE=EB, 故答案为:EC=EB; (2)如图2中,结论:ED=EB. 理由:连接PE, ∵△ACP,△ADE都是等边三角形, ∴AC=AD=DE,AD=AE,∠CAP=∠DAE=60°, ∴∠CAD=∠PAE, ∴△CAD≌△PAE, ∴∠ACD=∠APE=90°, ∴EP⊥AB,∵PA=PB, ∴EA=EB,∵DE=AE, ∴ED=EB; (3)当点D为边CB延长线上任意一点时,同法可证:ED=EB, 故答案为:ED=EB; 拓展应用:如图3中,作AH⊥x轴于H,CF⊥OB于F,连接OA, ∵A(﹣,1), ∴∠AOH=30°, 由(2)可知,CO=CB, ∵CF⊥OB, ∴OF=FB=1, ∴可以假设C(1,n), ∵OC=BC=AB, ∴1+n2=1+(+2)2, ∴n=2+, ∴C(1,2+).
复制答案
考点分析:
相关试题推荐

如图,已知点A(﹣1,0),B(3,0),C(0,1)在抛物线y=ax2+bx+c上.

(1)求抛物线解析式;

(2)在直线BC上方的抛物线上求一点P,使PBC面积为1;

(3)在x轴下方且在抛物线对称轴上,是否存在一点Q,使∠BQC=BAC?若存在,求出Q点坐标;若不存在,说明理由.

 

查看答案

如图所示,⊙O的半径为4,点A是⊙O上一点,直线l过点A;P是⊙O上的一个动点(不与点A重合),过点PPBl于点B,交⊙O于点E,直径PD延长线交直线l于点F,点A的中点.

(1)求证:直线l是⊙O的切线;

(2)若PA=6,求PB的长.

 

查看答案

(1)某校招聘教师一名,现有甲、乙、丙三人通过专业知识、讲课、答辩三项测试,他们各自的成绩如下表所示:

应聘者

专业知识

讲课

答辩

70

85

80

90

85

75

80

90

85

 

按照招聘简章要求,对专业知识、讲课、答辩三项赋权5:4:1.请计算三名应聘者的平均成绩,从成绩看,应该录取谁?

(2)我市举行了某学科实验操作考试,有A、B、C、D四个实验,规定每位学生只参加其中一个实验的考试,并由学生自己抽签决定具体的考试实验.小王,小张,小厉都参加了本次考试.

①小厉参加实验D考试的概率是     

②用列表或画树状图的方法求小王、小张抽到同一个实验的概率.

 

查看答案

低碳生活,绿色出行的理念已深入人心,现在越来越多的人选择骑自行车上下班或外出旅游.周末,小红相约到郊外游玩,她从家出发0.5小时后到达甲地,玩一段时间后按原速前往乙地,刚到达乙地,接到妈妈电话,快速返回家中.小红从家出发到返回家中,行进路程y(km)随时间x(h)变化的函数图象大致如图所示.

(1)小红从甲地到乙地骑车的速度为  km/h;

(2)当1.5≤x≤2.5时,求出路程y(km)关于时间x(h)的函数解析式;并求乙地离小红家多少千米?

 

查看答案

(1)实数x取哪些整数时,不等式2x﹣1x+1x﹣17﹣x都成立?

(2)化简:(÷,并从0x4中选取合适的整数代入求值.

 

查看答案
试题属性

Copyright @ 2008-2019 满分5 学习网 ManFen5.COM. All Rights Reserved.