下列函数:y=x(8﹣x),y=1﹣x2,y=
,y=x2﹣
,其中以x为自变量的二次函数有( )
A. 1个 B. 2个 C. 3个 D. 4个
在平面直角坐标系xOy中,将任意两点P(x1,y1)与Q(x2,y2)之间的“直距”定义为:DPQ=|x1﹣x2|+|y1﹣y2|.
例如:点M(1,﹣2),点N(3,﹣5),则DMN=|1﹣3|+|﹣2﹣(﹣5)|=5.已知点A(1,0)、点B(﹣1,4).
(1)则DAO= ,DBO= ;
(2)如果直线AB上存在点C,使得DCO为2,请你求出点C的坐标;
(3)如果⊙B的半径为3,点E为⊙B上一点,请你直接写出DEO的取值范围.
如图,正方形ABCD中,点E是BC边上的一个动点,连接AE,将线段AE绕点A逆时针旋转90°,得到AF,连接EF,交对角线BD于点G,连接AG.
(1)根据题意补全图形;
(2)判定AG与EF的位置关系并证明;
(3)当AB=3,BE=2时,求线段BG的长.
在平面直角坐标系xOy中,二次函数y=x2﹣2hx+h的图象的顶点为点D.
(1)当h=﹣1时,求点D的坐标;
(2)当﹣1≤x≤1时,求函数的最小值m.(用含h的代数式表示m)
数学活动课上,老师提出问题:如图,有一张长4dm,宽3dm的长方形纸板,在纸板的四个角裁去四个相同的小正方形,然后把四边折起来,做成一个无盖的盒子,问小正方形的边长为多少时,盒子的体积最大.
下面是探究过程,请补充完整:
(1)设小正方形的边长为xdm,体积为ydm3,根据长方体的体积公式得到y和x的关系式: ;
(2)确定自变量x的取值范围是 ;
(3)列出y与x的几组对应值.
x/dm | … |
|
|
|
|
| 1 |
| … | |||
y/dm3 | … | 1.3 | 2.2 | 2.7 |
| 3.0 | 2.8 | 2.5 |
| 1.5 | 0.9 | … |
(说明:表格中相关数值保留一位小数)
(4)在下面的平面直角坐标系xOy中,描出以补全后的表中各对对应值为坐标的点,画出该函数的图象;
(5)结合画出的函数图象,解决问题:当小正方形的边长约为 dm时,盒子的体积最大,最大值约为 dm3.
如图,⊙O中,AB是⊙O的直径,G为弦AE的中点,连接OG并延长交⊙O于点D,连接BD交AE于点F,延长AE至点C,使得FC=BC,连接BC.
(1)求证:BC是⊙O的切线;
(2)⊙O的半径为5,tanA=,求FD的长.