满分5 > 初中数学试题 >

如图,在△ABC中,∠A=90°,∠ABC=30°,AC=3,动点D从点A出发,...

如图,在△ABC中,∠A=90°,∠ABC=30°,AC=3,动点D从点A出发,在AB边上以每秒1个单位的速度向点B运动,连结CD,作点A关于直线CD的对称点E,设点D运动时间为t(s).

(1)若△BDE是以BE为底的等腰三角形,求t的值;

(2)若△BDE为直角三角形,求t的值;

(3)当S△BCE时,求所有满足条件的t的取值范围(所有数据请保留准确值,参考数据:tan15°=2﹣).

 

(1);(2) t的值为秒或3秒;(3) t的取值范围是6﹣3≤t≤3. 【解析】 (1)如图1,先由勾股定理求得AB的长,根据点A、E关于直线CD的对称,得CD垂直平分AE,根据线段垂直平分线的性质得:AD=DE,所以AD=DE=BD,由AB=3,可得t的值; (2)分两种情况: ①当∠DEB=90°时,如图2,连接AE,根据AB=3t=3,可得t的值; ②当∠EDB=90°时,如图3,根据△AGC≌△EGD,得AC=DE,由AC∥ED,得四边形CAED是平行四边形,所以AD=CE=3,即t=3; (3)△BCE中,由对称得:AC=CE=3,所以点D在运动过程中,CE的长不变,所以△BCE面积的变化取决于以CE作底边时,对应高的大小变化, ①当△BCE在BC的下方时, ②当△BCE在BC的上方时, 分别计算当高为3时对应的t的值即可得结论. 【解析】 (1)如图1,连接AE, 由题意得:AD=t, ∵∠CAB=90°,∠CBA=30°, ∴BC=2AC=6, ∴AB==3, ∵点A、E关于直线CD的对称, ∴CD垂直平分AE, ∴AD=DE, ∵△BDE是以BE为底的等腰三角形, ∴DE=BD, ∴AD=BD, ∴t=AD=; (2)△BDE为直角三角形时,分两种情况: ①当∠DEB=90°时,如图2,连接AE, ∵CD垂直平分AE, ∴AD=DE=t, ∵∠B=30°, ∴BD=2DE=2t, ∴AB=3t=3, ∴t=; ②当∠EDB=90°时,如图3, 连接CE, ∵CD垂直平分AE, ∴CE=CA=3, ∵∠CAD=∠EDB=90°, ∴AC∥ED, ∴∠CAG=∠GED, ∵AG=EG,∠CGA=∠EGD, ∴△AGC≌△EGD, ∴AC=DE, ∵AC∥ED, ∴四边形CAED是平行四边形, ∴AD=CE=3,即t=3; 综上所述,△BDE为直角三角形时,t的值为秒或3秒; (3)△BCE中,由对称得:AC=CE=3,所以点D在运动过程中,CE的长不变,所以△BCE面积的变化取决于以CE作底边时,对应高的大小变化, ①当△BCE在BC的下方时,过B作BH⊥CE,交CE的延长线于H,如图4,当AC=BH=3时, 此时S△BCE=AE•BH=×3×3=, 易得△ACG≌△HBG, ∴CG=BG, ∴∠ABC=∠BCG=30°, ∴∠ACE=60°﹣30°=30°, ∵AC=CE,AD=DE,DC=DC, ∴△ACD≌△ECD, ∴∠ACD=∠DCE=15°, tan∠ACD=tan15°==2﹣, ∴t=6﹣3, 由图形可知:0<t<6﹣3时,△BCE的BH越来越小,则面积越来越小, ②当△BCE在BC的上方时,如图3,CE=ED=3,且CE⊥ED, 此时S△BCE=CE•DE=×3×3=,此时t=3, 综上所述,当S△BCE≤时,t的取值范围是6﹣3≤t≤3.
复制答案
考点分析:
相关试题推荐

如图,平面直角坐标系中,直线l:y=x+mx轴于点A,二次函数y=ax2﹣3ax+c(a≠0,且a、c是常数)的图象与x轴交于A、B两点(点A在点B的左侧),与y轴交于点C,与直线l交于点D,已知CDx轴平行,且SACD:SABD=3:5.

(1)求点A的坐标;

(2)求此二次函数的解析式;

(3)点P为直线l上一动点,将线段AC绕点P顺时针旋转α°(0°<α°<360°)得到线段A'C'(点A,A'是对应点,点C,C'是对应点).请问:是否存在这样的点P,使得旋转后点A'和点C'分别落在直线l和抛物线y=ax2﹣3ax+c的图象上?若存在,请直接写出点A'的坐标;若不存在,请说明理由.

 

查看答案

为全力助推句容建设,大力发展句容旅游,某公司拟派AB两个工程队共同建设某区域的绿化带.已知A工程队2人与B工程队3人每天共完成310米绿化带,A工程队的5人与B工程队的6人每天共完成700米绿化带

(1)求A队每人每天和B队每人每天各完成多少米绿化带;

(2)该公司决定派AB工程队共20人参与建设绿化带,若每天完成绿化带总量不少于1480米,且B工程至少派出2人,则有哪几种人事安排方案?

 

查看答案

(1)如图1,Rt△ABC中,若AC=4,BC=3,DE⊥AC,且DE=DB,求AD的长;

(2)如图2,已知△ABC,若AB边上存在一点M,若AC边上存在一点N,使MB=MN,且△AMN∽△ABC,请利用没有刻度的直尺和圆规,作出符合条件的线段MN(注:不写作法,保留作图痕迹,对图中涉及到的点用字母进行标注).

 

查看答案

车辆经过润扬大桥收费站时,4个收费通道 ABCD中,可随机选择其中的一个通过.

1)一辆车经过此收费站时,选择 A通道通过的概率是     

2)求两辆车经过此收费站时,选择不同通道通过的概率.

 

查看答案

江苏省锡中实验学校为了解九年级学生的身体素质测试情况,随机抽取了该市九年级部分学生的身体素质测试成绩作为样本,按A(优秀),B(良好),C(合格),D(不合格)四个等级进行统计,并将统计结果绘制了如图两幅不完整的统计图,请根据图中提供的信息,解答下列问题:

(1)此次共调查了多少名学生;

(2)将条形统计图补充完整,并计算扇形统计图中“A”部分所对应的圆心角的度数;

(3)该市九年级共有1000名学生参加了身体素质测试,估计测试成绩在良好以上(含良好)的人数.

 

查看答案
试题属性

Copyright @ 2008-2019 满分5 学习网 ManFen5.COM. All Rights Reserved.