﹣的相反数是( )
A. B.
C. ﹣
D. ﹣
抛物线y=ax2+bx+3(a≠0)经过点A(﹣1,0),B(,0),且与y轴相交于点C.
(1)求这条抛物线的表达式;
(2)求∠ACB的度数;
(3)设点D是所求抛物线第一象限上一点,且在对称轴的右侧,点E在线段AC上,且DE⊥AC,当△DCE与△AOC相似时,求点D的坐标.
如图所示,现有一张边长为4的正方形纸片,点P为正方形AD边上的一点(不与点A、点D重合)将正方形纸片折叠,使点B落在P处,点C落在G处,PG交DC于H,折痕为EF,连接BP、BH.
(1)求证:∠APB=∠BPH;
(2)当点P在边AD上移动时,△PDH的周长是否发生变化?并证明你的结论;
如图△ABC中,∠C=90°,AB=5,BC=3,S、Q两点同时分别从A、C出发,点S以每秒2个单位的速度沿着AC向点C运动,点Q以每秒1个单位的速度沿着CB向点B运动.当其中一点到达终点时,另一点也随之停止运动.
(1)求经过几秒,SQ的长为2;
(2)设△SQC的面积为y,点S、Q的运动时间为x,求y与x的函数关系式,并写出x的取值范围.
如图,已知△ABC中,AB=AC,
(1)请用尺规作图的方法找出线段BC的中点,
(2)若AB边长为6,∠B=30°,求△ABC的面积.
如图,已知正比例函数y=2x与反比例函数y=(k>0)的图象交于A、B两点,且点A的横坐标为4,
(1)求k的值;
(2)根据图象直接写出正比例函数值小于反比例函数值时x的取值范围;
(3)过原点O的另一条直线l交双曲线y=(k>0)于P、Q两点(P点在第一象限),若由点A、P、B、Q为顶点组成的四边形面积为224,求点P的坐标.