满分5 > 初中数学试题 >

如图,AB∥CD,∠ABK的角平分线BE的反向延长线和∠DCK的角平分线CF的反...

如图,ABCD,ABK的角平分线BE的反向延长线和∠DCK的角平分线CF的反向延长线交于点H,K﹣H=27°,则∠K=(  )

A. 76°    B. 78°    C. 80°    D. 82°

 

B 【解析】 如图,分别过K、H作AB的平行线MN和RS, ∵AB∥CD, ∴AB∥CD∥RS∥MN, ∴∠RHB=∠ABE=∠ABK,∠SHC=∠DCF=∠DCK,∠NKB+∠ABK=∠MKC+∠DCK=180°, ∴∠BHC=180°﹣∠RHB﹣∠SHC=180°﹣(∠ABK+∠DCK), ∠BKC=180°﹣∠NKB﹣∠MKC=180°﹣(180°﹣∠ABK)﹣(180°﹣∠DCK)=∠ABK+∠DCK﹣180°, ∴∠BKC=360°﹣2∠BHC﹣180°=180°﹣2∠BHC, 又∠BKC﹣∠BHC=27°, ∴∠BHC=∠BKC﹣27°, ∴∠BKC=180°﹣2(∠BKC﹣27°), ∴∠BKC=78°, 故选:B.  
复制答案
考点分析:
相关试题推荐

有以下图形:平行四边形、矩形、等腰三角形、线段、菱形,其中既是轴对称图形又是中心对称图形的有(  )

A. 5    B. 4    C. 3    D. 2

 

查看答案

下列结论成立的是(   )

A. |a|a,则a0 B. |a||b|,则a±b

C. |a|a,则a≤0 D. |a||b|,则ab

 

查看答案

如图,在△ABC中,∠ACB=90°,ABC=30°,CDE是等边三角形,点D在边AB上.

(1)如图1,当点E在边BC上时,求证DE=EB;

(2)如图2,当点E在△ABC内部时,猜想EDEB数量关系,并加以证明;

(3)如图3,当点E在△ABC外部时,EHAB于点H,过点EGEAB,交线段AC的延长线于点G,AG=5CG,BH=3.求CG的长.

 

查看答案

抛物线y=ax2+bx+3(a≠0)经过点A(﹣1,0),B(,0),且与y轴相交于点C.

(1)求这条抛物线的表达式;

(2)求∠ACB的度数;

(3)设点D是所求抛物线第一象限上一点,且在对称轴的右侧,点E在线段AC上,且DEAC,当DCEAOC相似时,求点D的坐标.

 

查看答案

如图,已知RtABC中,∠C=90°,DBC的中点,以AC为直径的⊙OAB于点E.

(1)求证:DEO的切线;

(2)若AE:EB=1:2,BC=6,求⊙O的半径.

 

查看答案
试题属性

Copyright @ 2008-2019 满分5 学习网 ManFen5.COM. All Rights Reserved.