有A、B两个港口,水由A流向B,水流的速度是4千米/小时,甲、乙两船同时由A顺流驶向B,各自不停地在A、B之间往返航行,甲在静水中的速度是28千米/小时,乙在静水中的速度是20千米/小时.
设甲行驶的时间为t小时,甲船距B港口的距离为S1千米,乙船距B港口的距离为S2千米,如图为S1(千米)和t(小时)函数关系的部分图象.
(1)A、B两港口距离是_____千米.
(2)在图中画出乙船从出发到第一次返回A港口这段时间内,S2(千米)和t(小时)的函数关系的图象.
(3)求甲、乙两船第二次(不算开始时甲、乙在A处的那一次)相遇点M位于A、B港口的什么位置?
已知:如图,AB为⊙O的直径,C是BA延长线上一点,CP切⊙O于P,弦PD⊥AB于E,过点B作BQ⊥CP于Q,交⊙O于H,
(1)如图1,求证:PQ=PE;
(2)如图2,G是圆上一点,∠GAB=30°,连接AG交PD于F,连接BF,若tan∠BFE=3,求∠C的度数;
(3)如图3,在(2)的条件下,PD=6,连接QC交BC于点M,求QM的长.
(本题满分10分)一幢房屋的侧面外墙壁的形状如图所示,它由等腰三角形OCD和矩形ABCD组成,∠OCD=25°,外墙壁上用涂料涂成颜色相同的条纹,其中一块的形状是四边形EFGH,测得FG∥EH,GH=2.6m,∠FGB=65°。
(1)求证:GF⊥OC;
(2)求EF的长(结果精确到0.1m)。
(参考数据:sin25°=cos65°≈0.42,cos25°=sin65°≈0.91)
为了解学生参加选课走板情况,学校研究小组随机抽取若干人进行调查分析,根据收集整理的数据绘制成不完整的条形统计图和扇形统计图,课程类别代码如下:
A:文学类课程 B:益智类课程 C:艺术类课程
根据以上信息,解答下列问题:
(1)该小组采用的调查方式是 ,被调查的样本容量是 ;
(2)将条形统计图和扇形统计图补充完整;
(3)若全校有1280名学生,选择艺术类课程的学生有多少人?
图1、图2分别是7×6的网格,网格中的每个小正方形的边长均为1,点A、B在小正方形的顶点上.
(1)在图1中确定点C(点C在小正方形的顶点上),画出三角形ABC,使tanB=1,△ABC的面积为10;
(2)在图2中确定点D(点D在小正方形的顶点上),画出三角形ABD,使△ABD是以AB为斜边的直角三角形,且AD>BD,直接写出∠DAB的余弦值.
若(x﹣2)(x2+ax+b)的积中不含x的二次项和一次项,求(2a+b+1)(2a﹣b﹣1)﹣(a+2b)(﹣2b+a)+2b的值.