满分5 > 初中数学试题 >

已知AB是⊙O的直径,弦CD⊥AB于H,过CD延长线上一点E作⊙O的切线交AB的...

已知AB是⊙O的直径,弦CDABH,过CD延长线上一点E作⊙O的切线交AB的延长线于F,切点为G,连接AGCDK

(1)如图1,求证:KEGE

(2)如图2,连接CABG,若∠FGBACH,求证:CAFE

(3)如图3,在(2)的条件下,连接CGAB于点N,若sinEAK,求CN的长.

 

(1)证明见解析;(2)△EAD是等腰三角形.证明见解析;(3). 【解析】 试题 (1)连接OG,则由已知易得∠OGE=∠AHK=90°,由OG=OA可得∠AGO=∠OAG,从而可得∠KGE=∠AKH=∠EKG,这样即可得到KE=GE; (2)设∠FGB=α,由AB是直径可得∠AGB=90°,从而可得∠KGE=90°-α,结合GE=KE可得∠EKG=90°-α,这样在△GKE中可得∠E=2α,由∠FGB=∠ACH可得∠ACH=2α,这样可得∠E=∠ACH,由此即可得到CA∥EF; (3)如下图2,作NP⊥AC于P, 由(2)可知∠ACH=∠E,由此可得sinE=sin∠ACH=,设AH=3a,可得AC=5a,CH=4a,则tan∠CAH=,由(2)中结论易得∠CAK=∠EGK=∠EKG=∠AKC,从而可得CK=AC=5a,由此可得HK=a,tan∠AKH=,AK=a,结合AK=可得a=1,则AC=5;在四边形BGKH中,由∠BHK=∠BKG=90°,可得∠ABG+∠HKG=180°,结合∠AKH+∠GKG=180°,∠ACG=∠ABG可得∠ACG=∠AKH, 在Rt△APN中,由tan∠CAH=,可设PN=12b,AP=9b,由tan∠ACG=tan∠AKH=3可得CP=4b,由此可得AC=AP+CP==5,则可得b=,由此即可在Rt△CPN中由勾股定理解出CN的长. 试题解析: (1)如图1,连接OG. ∵EF切⊙O于G, ∴OG⊥EF, ∴∠AGO+∠AGE=90°, ∵CD⊥AB于H, ∴∠AHD=90°, ∴∠OAG=∠AKH=90°, ∵OA=OG, ∴∠AGO=∠OAG, ∴∠AGE=∠AKH, ∵∠EKG=∠AKH, ∴∠EKG=∠AGE, ∴KE=GE. (2)设∠FGB=α, ∵AB是直径, ∴∠AGB=90°, ∴∠AGE=∠EKG=90°﹣α, ∴∠E=180°﹣∠AGE﹣∠EKG=2α, ∵∠FGB=∠ACH, ∴∠ACH=2α, ∴∠ACH=∠E, ∴CA∥FE. (3)作NP⊥AC于P. ∵∠ACH=∠E, ∴sin∠E=sin∠ACH=,设AH=3a,AC=5a, 则CH=,tan∠CAH=, ∵CA∥FE, ∴∠CAK=∠AGE, ∵∠AGE=∠AKH, ∴∠CAK=∠AKH, ∴AC=CK=5a,HK=CK﹣CH=4a,tan∠AKH==3,AK=, ∵AK=, ∴, ∴a=1.AC=5, ∵∠BHD=∠AGB=90°, ∴∠BHD+∠AGB=180°, 在四边形BGKH中,∠BHD+∠HKG+∠AGB+∠ABG=360°, ∴∠ABG+∠HKG=180°, ∵∠AKH+∠HKG=180°, ∴∠AKH=∠ABG, ∵∠ACN=∠ABG, ∴∠AKH=∠ACN, ∴tan∠AKH=tan∠ACN=3, ∵NP⊥AC于P, ∴∠APN=∠CPN=90°, 在Rt△APN中,tan∠CAH=,设PN=12b,则AP=9b, 在Rt△CPN中,tan∠ACN==3, ∴CP=4b, ∴AC=AP+CP=13b, ∵AC=5, ∴13b=5, ∴b=, ∴CN===.  
复制答案
考点分析:
相关试题推荐

如图,已知点A(1,a)是反比例函数y1=的图象上一点,直线y2=﹣与反比例函数y1=的图象的交点为点BD,且B(3,﹣1),求:

Ⅰ)求反比例函数的解析式;

Ⅱ)求点D坐标,并直接写出y1y2x的取值范围;

Ⅲ)动点Px,0)在x轴的正半轴上运动,当线段PA与线段PB之差达到最大时,求点P的坐标.

 

查看答案

甲、乙两人分别站在相距6米的A、B两点练习打羽毛球,已知羽毛球飞行的路线为抛物线的一部分,甲在离地面1米的C处发出一球,乙在离地面1.5米的D处成功击球,球飞行过程中的最高点H与甲的水平距离AE4米,现以A为原点,直线ABx轴,建立平面直角坐标系(如图所示).求羽毛球飞行的路线所在的抛物线的表达式及飞行的最高高度.

 

查看答案

如图,AB为⊙O的直径,C为⊙O上一点,∠ABC的平分线交⊙O于点D,DEBC于点E.

(1)试判断DE与⊙O的位置关系,并说明理由;

(2)过点DDFAB于点F,若BE=3,DF=3,求图中阴影部分的面积.

 

查看答案

如图所示,在某海域,一般指挥船在C处收到渔船在B处发出的求救信号,经确定,遇险抛锚的渔船所在的B处位于C处的南偏西45°方向上,且BC=60海里;指挥船搜索发现,在C处的南偏西60°方向上有一艘海监船A,恰好位于B处的正西方向.于是命令海监船A前往搜救,已知海监船A的航行速度为30海里/小时,问渔船在B处需要等待多长时间才能得到海监船A的救援?(参考数据:结果精确到0.1小时)

 

查看答案

实验中学为了了解今年参加中招考试九年级300名学生的体育成绩,特对学生参加课外锻炼的情况进行了摸底,随机对九年级30名学生一周内平均每天参加课外锻炼的时间进行了调查,结果如下:(单位:分钟)

(1)补全频数分布表和频数分布直方图.

(2)填空:在这个问题中,总体是___________,样本是_________

由统计分析得,这组数据的平均数是39.37(分),众数是______,中位数是______

(3)如果描述该校300名学生一周内平均每天参加课外锻炼时间的总体情况,你认为用平均数、众数、中位数中的哪一个量比较合适?

(4)估计实验中学九年级有多少名学生,平均每天参加课外锻炼的时间多于30分钟?

 

查看答案
试题属性

Copyright @ 2008-2019 满分5 学习网 ManFen5.COM. All Rights Reserved.