满分5 > 初中数学试题 >

如图,已知正比例函数y=2x与反比例函数y=(k>0)的图象交于A、B两点,且点...

如图,已知正比例函数y=2x与反比例函数y=(k>0)的图象交于A、B两点,且点A的横坐标为4,

(1)求k的值;

(2)根据图象直接写出正比例函数值小于反比例函数值时x的取值范围;

(3)过原点O的另一条直线l交双曲线y=(k>0)于P、Q两点(P点在第一象限),若由点A、P、B、Q为顶点组成的四边形面积为224,求点P的坐标.

 

(1)32;(2)x<﹣4或0<x<4;(3)点P的坐标是P(﹣7+,14+2);或P(7+,﹣14+2). 【解析】 (1)先将x=4代入正比例函数y=2x,可得出y=8,求得点A(4,8),再根据点A与B关于原点对称,得出B点坐标,即可得出k的值; (2)正比例函数的值小于反比例函数的值即正比例函数的图象在反比例函数的图象下方,根据图形可知在交点的右边正比例函数的值小于反比例函数的值. (3)由于双曲线是关于原点的中心对称图形,因此以A、B、P、Q为顶点的四边形应该是平行四边形,那么△POA的面积就应该是四边形面积的四分之一即56.可根据双曲线的解析式设出P点的坐标,然后表示出△POA的面积,由于△POA的面积为56,由此可得出关于P点横坐标的方程,即可求出P点的坐标. (1)∵点A在正比例函数y=2x上, ∴把x=4代入正比例函数y=2x, 解得y=8,∴点A(4,8), 把点A(4,8)代入反比例函数y=,得k=32, (2)∵点A与B关于原点对称, ∴B点坐标为(﹣4,﹣8), 由交点坐标,根据图象直接写出正比例函数值小于反比例函数值时x的取值范围,x<﹣8或0<x<8; (3)∵反比例函数图象是关于原点O的中心对称图形, ∴OP=OQ,OA=OB, ∴四边形APBQ是平行四边形, ∴S△POA=S平行四边形APBQ×=×224=56, 设点P的横坐标为m(m>0且m≠4), 得P(m,), 过点P、A分别做x轴的垂线,垂足为E、F, ∵点P、A在双曲线上, ∴S△POE=S△AOF=16, 若0<m<4,如图, ∵S△POE+S梯形PEFA=S△POA+S△AOF, ∴S梯形PEFA=S△POA=56. ∴(8+)•(4﹣m)=56. ∴m1=﹣7+3,m2=﹣7﹣3(舍去), ∴P(﹣7+3,16+); 若m>4,如图, ∵S△AOF+S梯形AFEP=S△AOP+S△POE, ∴S梯形PEFA=S△POA=56. ∴×(8+)•(m﹣4)=56, 解得m1=7+3,m2=7﹣3(舍去), ∴P(7+3,﹣16+). ∴点P的坐标是P(﹣7+3,16+);或P(7+3,﹣16+).
复制答案
考点分析:
相关试题推荐

如图,热气球探测器显示,从热气球A处看一栋楼顶部B处的仰角为30°,看这栋楼底部C处的俯角为60°,热气球与楼的水平距离AD为100米,试求这栋楼的高度BC.

 

查看答案

如图,点P⊙O的直径AB的延长线上,PC⊙O的切线,点C为切点,连接AC,过点APC的垂线,点D为垂足,AD⊙O于点E.

(1)如图1,求证:∠DAC=∠PAC;

(2)如图2,点F(与点C位于直径AB两侧)在⊙O上,,连接EF,过点FAD的平行线交PC于点G,求证:FG=DE+DG;

(3)(2)的条件下,如图3,若AE=DG,PO=5,求EF的长.

 

查看答案

某校九年级开展征文活动,征文主题只能从爱国”“敬业”“诚信”“友善四个主题选择一个,九年级每名学生按要求都上交了一份征文,学校为了解选择各种征文主题的学生人数,随机抽取了部分征文进行了调查,根据调查结果绘制成如下两幅不完整的统计图.

(1)求共抽取了多少名学生的征文;

(2)将上面的条形统计图补充完整;

(3)在扇形统计图中,选择爱国主题所对应的圆心角是多少;

(4)如果该校九年级共有1200名学生,请估计选择以友善为主题的九年级学生有多少名.

 

查看答案

先化简,再求代数式()÷的值,其中a=2sin45°+tan45°.

 

查看答案

等腰梯形ABCD中,ADBC,AB=CD,BD为对角线,将ABD沿BD对折,A点刚好落在BC边的Aˊ处,C=60°,BC=12,则等腰梯形ABCD的周长为=_____

 

查看答案
试题属性

Copyright @ 2008-2019 满分5 学习网 ManFen5.COM. All Rights Reserved.