满分5 > 初中数学试题 >

如图1,在Rt△ABC中,∠A=90°,AB=AC,点D,E分别在边AB,AC上...

如图1,在RtABC中,A=90°,AB=AC,点D,E分别在边AB,AC上,AD=AE,连接DC,点M,P,N分别为DE,DC,BC的中点.

(1)观察猜想:

图1中,线段PM与PN的数量关系是     ,位置关系是     

(2)探究证明:

ADE绕点A逆时针方向旋转到图2的位置,连接MN,BD,CE,判断PMN的形状,并说明理由;

(3)拓展延伸:

ADE绕点A在平面内自由旋转,若AD=4,AB=10,请直接写出PMN面积的最大值.

 

(1)PM=PN,PM⊥PN;(2)△PMN是等腰直角三角形;(3). 【解析】 试题(1)利用三角形的中位线得出PM=CE,PN=BD,进而判断出BD=CE,即可得出结论,再利用三角形的中位线得出PM∥CE得出∠DPM=∠DCA,最后用互余即可得出结论; (2)先判断出△ABD≌△ACE,得出BD=CE,同(1)的方法得出PM=BD,PN=BD,即可得出PM=PN,同(1)的方法即可得出结论; (3)先判断出MN最大时,△PMN的面积最大,进而求出AN,AM,即可得出MN最大=AM+AN,最后用面积公式即可得出结论. 试题解析:(1)∵点P,N是BC,CD的中点, ∴PN∥BD,PN=BD, ∵点P,M是CD,DE的中点, ∴PM∥CE,PM=CE, ∵AB=AC,AD=AE, ∴BD=CE, ∴PM=PN, ∵PN∥BD, ∴∠DPN=∠ADC, ∵PM∥CE, ∴∠DPM=∠DCA, ∵∠BAC=90°, ∴∠ADC+∠ACD=90°, ∴∠MPN=∠DPM+∠DPN=∠DCA+∠ADC=90°, ∴PM⊥PN, 故答案为:PM=PN,PM⊥PN, (2)由旋转知,∠BAD=∠CAE, ∵AB=AC,AD=AE, ∴△ABD≌△ACE(SAS), ∴∠ABD=∠ACE,BD=CE, 同(1)的方法,利用三角形的中位线得,PN=BD,PM=CE, ∴PM=PN, ∴△PMN是等腰三角形, 同(1)的方法得,PM∥CE, ∴∠DPM=∠DCE, 同(1)的方法得,PN∥BD, ∴∠PNC=∠DBC, ∵∠DPN=∠DCB+∠PNC=∠DCB+∠DBC, ∴∠MPN=∠DPM+∠DPN=∠DCE+∠DCB+∠DBC =∠BCE+∠DBC=∠ACB+∠ACE+∠DBC =∠ACB+∠ABD+∠DBC=∠ACB+∠ABC, ∵∠BAC=90°, ∴∠ACB+∠ABC=90°, ∴∠MPN=90°, ∴△PMN是等腰直角三角形, (3)如图2,同(2)的方法得,△PMN是等腰直角三角形, ∴MN最大时,△PMN的面积最大, ∴DE∥BC且DE在顶点A上面, ∴MN最大=AM+AN, 连接AM,AN, 在△ADE中,AD=AE=4,∠DAE=90°, ∴AM=2, 在Rt△ABC中,AB=AC=10,AN=5, ∴MN最大=2+5=7, ∴S△PMN最大=PM2=×MN2=×(7)2= .
复制答案
考点分析:
相关试题推荐

在水果销售旺季,某水果店购进一优质水果,进价为 20 /千克,售价不低于 20 /千克,且不超过 32 /千克,根据销售情况,发现该水果一天的销售量 y(千克与该天的售价 x(/千克满足如下表所示的一次函数关系.

销售量 y(千克)

34.8

32

29.6

28

售价 x(元/千克)

22.6

24

25.2

26

 

(1)某天这种水果的售价为 23.5 /千克,求当天该水果的销售量.

(2)如果某天销售这种水果获利 150 元,那么该天水果的售价为多少元?

 

查看答案

如图,已知AB为⊙O的直径,BD和CD为⊙O的切线,切点分别为B和C.

(1)求证:AC∥OD;

(2)当BC=BD,且BD=6cm时,求图中阴影部分的面积(结果不取近似值).

 

查看答案

如图,在数学活动课上,小丽为了测量校园内旗杆AB的高度,站在教学楼的C处测得旗杆底端B的俯角为45°,测得旗杆顶端A的仰角为30°.已知旗杆与教学楼的距离BD=9m,请你帮她求出旗杆的高度(结果保留根号).

 

查看答案

目前微信”、“支付宝”、“共享单车网购给我们的生活带来了很多便利,初二数学小组在校内对你最认可的四大新生事物进行调查,随机调查了m人(每名学生必选一种且只能从这四种中选择一种)并将调查结果绘制成如下不完整的统计图.

(1)根据图中信息求出m=     ,n=     

(2)请你帮助他们将这两个统计图补全;

(3)根据抽样调查的结果,请估算全校2000名学生中,大约有多少人最认可微信这一新生事物?

(4)已知A、B两位同学都最认可微信”,C同学最认可支付宝”D同学最认可网购从这四名同学中抽取两名同学,请你通过树状图或表格,求出这两位同学最认可的新生事物不一样的概率.

 

查看答案

先化简再求值: 其中x是不等式组的整数解.

 

查看答案
试题属性

Copyright @ 2008-2019 满分5 学习网 ManFen5.COM. All Rights Reserved.