满分5 > 初中数学试题 >

如图,已知等边△OA1B1,顶点A1在双曲线y=(x>0)上,点B1的坐标为(2...

如图,已知等边OA1B1,顶点A1在双曲线y=(x>0)上,点B1的坐标为(2,0).过B1B1A2OA1交双曲线于点A2,过A2A2B2A1B1x轴于点B2,得到第二个等边B1A2B2;过B2B2A3B1A2交双曲线于点A3,过A3A3B3A2B2x轴于点B3,得到第三个等边B2A3B3;以此类推,,则点B6的坐标为_____

 

(2,0). 【解析】根据等边三角形的性质以及反比例函数图象上点的坐标特征分别求出B2、B3、B4的坐标,得出规律,进而求出点B6的坐标. 如图,作A2C⊥x轴于点C,设B1C=a,则A2C=a, OC=OB1+B1C=2+a,A2(2+a,a). ∵点A2在双曲线y=(x>0)上, ∴(2+a)•a=, 解得a=﹣1,或a=﹣﹣1(舍去), ∴OB2=OB1+2B1C=2+2﹣2=2, ∴点B2的坐标为(2,0); 作A3D⊥x轴于点D,设B2D=b,则A3D=b, OD=OB2+B2D=2+b,A2(2+b,b). ∵点A3在双曲线y=(x>0)上, ∴(2+b)•b=, 解得b=﹣+,或b=﹣﹣(舍去), ∴OB3=OB2+2B2D=2﹣2+2=2, ∴点B3的坐标为(2,0); 同理可得点B4的坐标为(2,0)即(4,0); …, ∴点Bn的坐标为(2,0), ∴点B6的坐标为(2,0), 故答案为:(2,0).
复制答案
考点分析:
相关试题推荐

下列说法正确的是_____,(请直接填写序号)

223;②四边形的内角和与外角和相等;③的立方根为4;

④一元二次方程x2﹣6x=10无实数根;

⑤若一组数据7,4,x,3,5,6的众数和中位数都是5,则这组数据的平均数也是5.

 

查看答案

如图①,…,是用围棋棋子按照某种规律摆成的一行广字,按照这种规律,第8广字中的棋子个数是_____

 

查看答案

计算:(π﹣3.14)0﹣2|﹣3|=_____

 

查看答案

函数的自变量x的取值范围是_____

 

查看答案

如图ABC,AB=BC,ABC=90°,BMAC边上的中线D,E分别在边ACBC,DB=DE,DEBM相交于点N,EFAC于点F,以下结论:

①∠DBM=CDE;SBDE<S四边形BMFECD·EN=BN·BD;AC=2DF.

其中正确结论的个数是(  )

A. 1    B. 2    C. 3    D. 4

 

查看答案
试题属性

Copyright @ 2008-2019 满分5 学习网 ManFen5.COM. All Rights Reserved.