满分5 > 初中数学试题 >

如图1,在平面直角坐标系xOy中,直线l:与x轴、y轴分别交于点A和点B(0,﹣...

如图1,在平面直角坐标系xOy中,直线l:x轴、y轴分别交于点A和点B(0,﹣1),抛物线经过点B,且与直线l的另一个交点为C(4,n).

(1)求n的值和抛物线的解析式;

(2)点D在抛物线上,且点D的横坐标为t(0<t<4).DEy轴交直线l于点E,点F在直线l上,且四边形DFEG为矩形(如图2).若矩形DFEG的周长为p,求pt的函数关系式以及p的最大值;

(3)M是平面内一点,将△AOB绕点M沿逆时针方向旋转90°后,得到△A1O1B1,点A、O、B的对应点分别是点A1、O1、B1.若△A1O1B1的两个顶点恰好落在抛物线上,请直接写出点A1的横坐标.

 

(1)y=x2﹣x﹣1;(2) ;当t=2时,p有最大值;(3)或; 【解析】 (1)把点B的坐标代入直线解析式求出m的值,再把点C的坐标代入直线求解即可得到n的值,然后利用待定系数法求二次函数解析式解答; (2)令y=0求出点A的坐标,从而得到OA、OB的长度,利用勾股定理列式求出AB的长,然后根据两直线平行,内错角相等可得∠ABO=∠DEF,再解直角三角形用DE表示出EF、DF,根据矩形的周长公式表示出p,利用直线和抛物线的解析式表示DE的长,整理即可得到P与t的关系式,再利用二次函数的最值问题解答; (3)根据逆时针旋转角为90°可得A1O1∥y轴时,B1O1∥x轴,然后分①点O1、B1在抛物线上时,表示出两点的横坐标,再根据纵坐标相同列出方程求解即可;②点A1、B1在抛物线上时,表示出点B1的横坐标,再根据两点的纵坐标相差A1O1的长度列出方程求解即可. (1)∵直线l:y=x+m经过点B(0,﹣1), ∴m=﹣1, ∴直线l的解析式为y=x﹣1, ∵直线l:y=x﹣1经过点C(4,n), ∴n=×4﹣1=2, ∵抛物线y=x2+bx+c经过点C(4,2)和点B(0,﹣1), ∴, 解得, ∴抛物线的解析式为y=x2﹣x﹣1; (2)令y=0,则x﹣1=0, 解得x=, ∴点A的坐标为(,0), ∴OA=, 在Rt△OAB中,OB=1, ∴AB=, ∵DE∥y轴, ∴∠ABO=∠DEF, 在矩形DFEG中,EF=DE•cos∠DEF=DE•, DF=DE•sin∠DEF=DE•, ∴p=2(DF+EF)=2(, ∵点D的横坐标为t(0<t<4), ∴D(t,t2﹣t﹣1),E(t,t﹣1), ∴DE=(t﹣1)﹣(t2﹣t﹣1)=﹣t2+2t, ∴p=×(﹣t2+2t)=﹣t2+t, ∵p=﹣(t﹣2)2+,且﹣<0, ∴当t=2时,p有最大值; (3)∵△AOB绕点M沿逆时针方向旋转90°, ∴A1O1∥y轴时,B1O1∥x轴,设点A1的横坐标为x, ①如图1,点O1、B1在抛物线上时,点O1的横坐标为x,点B1的横坐标为x+1, ∴x2﹣x﹣1=(x+1)2﹣(x+1)﹣1, 解得x=, ②如图2,点A1、B1在抛物线上时,点B1的横坐标为x+1,点A1的纵坐标比点B1的纵坐标大, ∴x2﹣x﹣1=(x+1)2﹣(x+1)﹣1+, 解得x=﹣, 综上所述,点A1的横坐标为或﹣.
复制答案
考点分析:
相关试题推荐

已知AB是⊙O的直径,弦CDABH,过CD延长线上一点E作⊙O的切线交AB的延长线于F,切点为G,连接AGCDK

(1)如图1,求证:KEGE

(2)如图2,连接CABG,若∠FGBACH,求证:CAFE

(3)如图3,在(2)的条件下,连接CGAB于点N,若sinEAK,求CN的长.

 

查看答案

已知如图平面直角坐标系中,点O是坐标原点,矩形ABCO是顶点坐标分别为A(3,0)、B(3,4)、C(0,4).点Dy轴上,且点D的坐标为(0,﹣5),点P是直线AC上的一动点.

(1)当点P运动到线段AC的中点时,求直线DP的解析式(关系式);

(2)当点P沿直线AC移动时,过点D、P的直线与x轴交于点M.问在x轴的正半轴上是否存在使DOMABC相似的点M?若存在,请求出点M的坐标;若不存在,请说明理由;

(3)当点P沿直线AC移动时,以点P为圆心、R(R>0)为半径长画圆.得到的圆称为动圆P.若设动圆P的半径长为,过点D作动圆P的两条切线与动圆P分别相切于点E、F.请探求在动圆P中是否存在面积最小的四边形DEPF?若存在,请求出最小面积S的值;若不存在,请说明理由.

 

查看答案

随着一带一路的进一步推进,我国瓷器(“china”)更为一带一路沿线人民所推崇,一外国商户看准这一商机,向我国一瓷器经销商咨询工艺品茶具,得到如下信息:

(1)每个茶壶的批发价比茶杯多110元;

(2)一套茶具包括一个茶壶与四个茶杯;

(3)600元批发茶壶的数量与160元批发茶杯的数量相同.

根据以上信息:

(1)求茶壶与茶杯的批发价;

(2)若该商户购进茶杯的数量是茶壶数量的5倍还多20个,并且总数不超过200个,该商户打算将一半的茶具按每套500元成套销售,其余按每个茶壶270元,每个茶杯70元零售,请帮助他设计一种获取利润最大的方案,并求出最大利润.

 

查看答案

如图,在ABC中,AB=AC=8,BC=12,用尺规作图作ABCBC边上的中线AD,并求线段AD的长(保留作图痕迹,不要求写作法和证明)

 

查看答案

如图,ABCADE分别是以BC,DE为底边且顶角相等的等腰三角形,点D在线段BC上,AF平分DEBC于点F,连接BE,EF.

(1)CDBE相等?若相等,请证明;若不相等,请说明理由;

(2)若∠BAC=90°,求证:BF2+CD2=FD2

 

查看答案
试题属性

Copyright @ 2008-2019 满分5 学习网 ManFen5.COM. All Rights Reserved.