如图,△ABC和△ADE分别是以BC,DE为底边且顶角相等的等腰三角形,点D在线段BC上,AF平分DE交BC于点F,连接BE,EF.
(1)CD与BE相等?若相等,请证明;若不相等,请说明理由;
(2)若∠BAC=90°,求证:BF2+CD2=FD2.
箱子里有3个红球和2个黄球,从箱子中一次拿两个球出来.
(1)请你用列举法(树形图或列表)求一次拿出的两个球中时一红一黄的概率;
(2)往箱子中再加入x个白球,从箱子里一次拿出的两个球,多次实验统计如下
取出两个球的次数 | 20 | 30 | 50 | 100 | 150 | 200 | 400 |
至少有一个球是白球的次数 | 13 | 20 | 35 | 71 | 107 | 146 | 288 |
至少有一个球是白球的频率 | 0.65 | 0.67 | 0.70 | 0.71 | 0.713 | 0.73 | 0.72 |
请你估计至少有一个球是白球的概率是多少?
(3)在(2)的条件下求x的值.(=0.7222222…)
甲、乙两名射击运动员进行射击比赛,两人在相同条件下,各射击10次,射击的成绩如图所示.根据统计图信息,整理分析数据如下:
| 平均成绩(环) | 中位数(环) | 众数(环) | 方差 |
甲 | 8 | b | 8 | s2 |
乙 | a | 7 | c | 0.6 |
(1)补充表格中a,b,c的值,并求甲的方差s2;
(2)运用表中的四个统计量,简要分析这两名运动员的射击成绩,若选派其中一名参赛,你认为应选哪名运动员?
先化简,再求值:,其中,a=1+
,b=1﹣
.
定义:对于任何数a,符号[a]表示不大于a的最大整数.
例如:[5.7]=5,[5]=5,[﹣1.5]=﹣2.
(1)[﹣]= ;
(2)如果[a]=3,那么a的取值范围是 ;
(3)如果[]=﹣3,求满足条件的所有整数x.
计算:
(1)(2+)2(2﹣
)2
(2).