①③④
【解析】
根据等边三角形的性质求出∠EAC=60°,AE=AC,求出BC=AF,根据SAS证△ABC≌△EFA,推出FE=AB,∠AEF=∠BAC=30°,求出∠AOE=90°,即可判断③;求出AD=BD,BF=AF,∠DFB=∠EAF,∠BDF=∠AEF,根据AAS证△DBF≌△EFA,即可判断①;得出四边形ADFE为平行四边形,推出AG=AF,AG=AB,求出AD=AB,推出AD=4AG,即可判断④;求出∠FAE=90°,∠AFE<90°,推出EF>AE,即可判断②;根据平行四边形性质得出AG=GF,推出S三角形AGOS三角形GOF,设AG=1,则AF=2,AB=4,BC=2,由勾股定理求出AC=2,求出AO=OC,由勾股定理求出OE=3,得出△GOF和△EGO的面积比是1:3,即可判断⑤.
【解析】
∵△ACE是等边三角形,
∴∠EAC=60°,AE=AC,
∵∠BAC=30°,
∴∠FAE=∠ACB=90°,AB=2BC,
∵F为AB的中点,
∴AB=2AF,
∴BC=AF,
在△ABC和△EFA中
,
∴△ABC≌△EFA(SAS),
∴FE=AB,∠AEF=∠BAC=30°,
∠AOE=180°-30°-60°=90°,
∴EF⊥AC,∴③正确,
∵AD=BD,BF=AF,
∴∠DFB=90°,∠BDF=30°,
∵∠FAE=∠BAC+∠CAE=90°,
∴∠DFB=∠EAF,
∵EF⊥AC,
∴∠AEF=30°,
∴∠BDF=∠AEF,
在△DBF和△EFA中
,
∴△DBF≌△EFA(AAS),∴①正确;
∴AE=DF,
∵FE=AB,
∴四边形ADFE为平行四边形,
∴AG=AF,AG=AB,
∵AD=AB,
则AD=4AG,∴④正确;
∵四边形ADFE为平行四边形,
∴AD=EF,
∵∠FAE=90°,∠AFE<90°,
∴EF>AE,
即AD>AE,∴②错误;
∵四边形ADFE为平行四边形,
∴AG=GF,
∴S三角形AGO=S三角形GOF,
设AG=1,则AF=2,AB=4,BC=2,由勾股定理得:AC=2,
∠CAE=60°,∠AEF=∠CAB=30°,
∴∠COE=30°+60°=90°=∠AOE,
∵AE=CE,
∴AO=OC,
在等边三角形ACE中,AE=AC=2,AO=OC=,
由勾股定理得:OE==3,
∵△GOF的边OF和△EGO的边OE上的高相等,
∴△GOF和△EGO的面积比是1:3,
即△AOG与△EOG的面积比为1:3,∴⑤错误;
正确的有①③④,
故答案为:①③④.