已知AB是⊙O的直径,弦CD⊥AB于H,过CD延长线上一点E作⊙O的切线交AB的延长线于F,切点为G,连接AG交CD于K.
(1)如图1,求证:KE=GE;
(2)如图2,连接CABG,若∠FGB=∠ACH,求证:CA∥FE;
(3)如图3,在(2)的条件下,连接CG交AB于点N,若sinE=,AK=
,求CN的长.
如图,在△ABC中,AB=BC,以AB为直径的⊙O交BC于点D,交AC于点F,过点C作CE∥AB,与过点A的切线相交于点E,连接AD.
(1)求证:AD=AE;
(2)若AB=6,AC=4,求AE的长.
一次生活常识竞赛一共有25道题,答对一题得4分,不答得0分,答错一题扣2分,小明有2题没答,竞赛成绩要超过74分,则小明至多答错多少道题.
王老师将本班的“校园安全知识竞赛”成绩(成绩用s表示,满分为100分)分为5组,第1组:50≤x<60,第2组:60≤x<70,…,第5组:90≤x<100.并绘制了如图所示的频率分布表和频数分布直方图(不完整).
(1)请补全频率分布表和频数分布直方图;
(2)王老师从第1组和第5组的学生中,随机抽取两名学生进行谈话,求第1组至少有一名学生被抽到的概率;
(3)设从第1组和第5组中随机抽到的两名学生的成绩分别为m、n,求事件“|m﹣n|≤10”的概率.
分组编号 | 成绩 | 频数 | 频率 |
第1组 | 50≤s<60 |
| 0.04 |
第2组 | 60≤s<70 | 8 | 0.16 |
第3组 | 70≤s<80 |
| 0.4 |
第4组 | 80≤s<90 | 17 | 0.34 |
第5组 | 90≤s≤100 | 3 | 0.06 |
合计 |
|
| 1 |
如图,在△ABC中,∠ACB=90°,CD为△ABC的角平分线.
(1)求作:线段CD的垂直平分线EF,分别交AC,BC于点E,F,垂足为O(要求尺规作图,保留作图痕迹,不写作法);
(2)求证:△COE≌△COF.
计算:(﹣2)0+
+4cos30°﹣|﹣
|.