满分5 > 初中数学试题 >

如图,在△ABC中,∠ACB=90°,∠ABC=30°,△CDE是等边三角形,点...

如图,在△ABC中,∠ACB=90°,ABC=30°,CDE是等边三角形,点D在边AB上.

(1)如图1,当点E在边BC上时,求证DE=EB;

(2)如图2,当点E在△ABC内部时,猜想EDEB数量关系,并加以证明;

(3)如图3,当点E在△ABC外部时,EHAB于点H,过点EGEAB,交线段AC的延长线于点G,AG=5CG,BH=3.求CG的长.

 

(1)证明见解析;(2)ED=EB,证明见解析;(3)CG=2. 【解析】 试题(1)、根据等边三角形的性质得出∠CED=60°,从而得出∠EDB=30°,从而得出DE=BE;(2)、取AB的中点O,连接CO、EO,根据△ACO和△CDE为等边三角形,从而得出△ACD和△OCE全等,然后得出△COE和△BOE全等,从而得出答案;(3)、取AB的中点O,连接CO、EO、EB,根据题意得出△COE和△BOE全等,然后得出△CEG和△DCO全等,设CG=a,则AG=5a,OD=a,根据题意列出一元一次方程求出a的值得出答案. 试题解析:(1)、证明:∵△CDE是等边三角形, ∴∠CED=60°, ∴∠EDB=60°﹣∠B=30°, ∴∠EDB=∠B, ∴DE=EB; (2)、【解析】 ED=EB, 理由如下:取AB的中点O,连接CO、EO, ∵∠ACB=90°,∠ABC=30°, ∴∠A=60°,OC=OA, ∴△ACO为等边三角形, ∴CA=CO, ∵△CDE是等边三角形, ∴∠ACD=∠OCE,∴△ACD≌△OCE, ∴∠COE=∠A=60°,∴∠BOE=60°, ∴△COE≌△BOE, ∴EC=EB, ∴ED=EB; (3)、取AB的中点O,连接CO、EO、EB, 由(2)得△ACD≌△OCE, ∴∠COE=∠A=60°,∴∠BOE=60°,△COE≌△BOE,∴EC=EB,∴ED=EB, ∵EH⊥AB, ∴DH=BH=3,∵GE∥AB, ∴∠G=180°﹣∠A=120°, ∴△CEG≌△DCO, ∴CG=OD, 设CG=a,则AG=5a,OD=a,∴AC=OC=4a,∵OC=OB, ∴4a=a+3+3, 解得,a=2, 即CG=2.  
复制答案
考点分析:
相关试题推荐

图中是抛物线拱桥,P处有一照明灯,水面OA4m,从O、A两处观测P处,仰角分别为α、β,且tanα=,tanβ=,以O为原点,OA所在直线为x轴建立直角坐标系.

(1)求点P的坐标;

(2)水面上升1m,水面宽多少?

 

查看答案

如图,已知正方形ABCD的边长为,连接AC、BD交于点O,CE平分∠ACD交BD于点E,

(1)求DE的长;

(2)过点EF作EF⊥CE,交AB于点F,求BF的长;

(3)过点E作EG⊥CE,交CD于点G,求DG的长.

 

查看答案

某爱心企业在政府的支持下投入资金,准备修建一批室外简易的足球场和篮球场,供市民免费使用,修建1个足球场和1个篮球场共需8.5万元,修建2个足球场和4个篮球场共需27万元.

(1)求修建一个足球场和一个篮球场各需多少万元?

(2)该企业预计修建这样的足球场和篮球场共20个,投入资金不超过90万元,求至少可以修建多少个足球场?

 

查看答案

据调查,超速行驶是引发交通事故的主要原因之一,所以规定以下情境中的速度不得超过15m/s,在一条笔直公路BD的上方A处有一探测仪,如平面几何图,AD=24m,D=90°,第一次探测到一辆轿车从B点匀速向D点行驶,测得∠ABD=31°,2秒后到达C点,测得∠ACD=50°(tan31°≈0. 6,tan50°≈1.2,结果精确到1m)

(1)求B,C的距离.

(2)通过计算,判断此轿车是否超速.

 

查看答案

为了解某校七年级学生的英语口语水平,随机抽取该年级部分学生进行英语口语测试,学生的测试成绩按标准定为 A、B、C、D 四个等级,并把测试成绩绘成如图所示的两个统计图表.

  七年级英语口语测试成绩统计表

成绩x(分)

等级

人数

x≥90

A

12

75≤x<90

B

m

60≤x<75

C

n

x<60

D

9

 

请根据所给信息,解答下列问题:

(1)本次被抽取参加英语口语测试的学生共有多少人?

(2)求扇形统计图中 C 级的圆心角度数;

(3)若该校七年级共有学生 640人,根据抽样结课,估计英语口语达到 B级以上(包括B 级)的学生人数.

 

查看答案
试题属性

Copyright @ 2008-2019 满分5 学习网 ManFen5.COM. All Rights Reserved.