(本题8分)如图,在△ABC中,AB=AC,以AB为直径的⊙O分别与BC,AC交于点D,E,过点D作⊙O的切线DF,交AC于点F.
(1)求证:DF⊥AC;
(2)若⊙O的半径为4,∠CDF=22.5°,求阴影部分的面积.
如图是某校甲班学生外出去基地参观,乘车、行步、骑车的人数分布直方图和扇形统计图.
(1)根据统计图求甲班步行的人数;
(2)甲班步行的对象根据步行人数通过全班随机抽号来确定;乙班学生去基地分两段路走,即学校﹣﹣A地﹣﹣基地,每段路走法有乘车或步行或骑车,你认为哪个班的学生有步行的可能性少?(利用列表法或树状图求概率说明).
如图,在10×10正方形网格中,每个小正方形的边长均为1个单位.将△ABC向下平移4个单位,得到△A′B′C′,再把△A′B′C′绕点C'顺时针旋转90°,得到△A″B″C′,
(1)请你画出△A′B′C′和△A″B″C′(不要求写画法).
(2)求出线段A′C′在旋转过程中所扫过的面积.(结果保留)
计算:(﹣1)2﹣2sin45°+(π﹣2018)0+|﹣|
在正方形ABCD中,点E是AD的中点,连接BE,BF平分∠EBC交CD于点F,交AC于点G,将△CGF沿直线GF折叠至△C′GF,BD与△C′GF相交于点M、N,连接CN,若AB=6,则四边形CNC′G的面积是_____.
观察下列图形的排列规律(其中☆、□、●分别表示五角星、正方形、圆)●□☆●●□☆●□☆●●□☆●…若第一个图形是圆,则第2009个图形是_____(填名称).