满分5 > 初中数学试题 >

如图1,二次函数y=ax2﹣2ax﹣3a(a<0)的图象与x轴交于A、B两点(点...

如图1,二次函数yax22ax3aa0)的图象与x轴交于AB两点(点A在点B的右侧),与y轴的正半轴交于点C,顶点为D

1)求顶点D的坐标(用含a的代数式表示);

2)若以AD为直径的圆经过点C

①求抛物线的函数关系式;

②如图2,点Ey轴负半轴上一点,连接BE,将△OBE绕平面内某一点旋转180°,得到△PMN(点PMN分别和点OBE对应),并且点MN都在抛物线上,作MFx轴于点F,若线段MFBF12,求点MN的坐标;

③点Q在抛物线的对称轴上,以Q为圆心的圆过AB两点,并且和直线CD相切,如图3,求点Q的坐标.

 

(1)(1,﹣4a);(2)①y=﹣x2+2x+3;②M(,)、N(,);③点Q的坐标为(1,﹣4+2)或(1,﹣4﹣2). 【解析】 分析: (1)将二次函数的解析式进行配方即可得到顶点D的坐标. (2)①以AD为直径的圆经过点C,即点C在以AD为直径的圆的圆周上,依据圆周角定理不难得出△ACD是个直角三角形,且∠ACD=90°,A点坐标可得,而C、D的坐标可由a表达出来,在得出AC、CD、AD的长度表达式后,依据勾股定理列等式即可求出a的值. ②将△OBE绕平面内某一点旋转180°得到△PMN,说明了PM正好和x轴平行,且PM=OB=1,所以求M、N的坐标关键是求出点M的坐标;首先根据①的函数解析式设出M点的坐标,然后根据题干条件:BF=2MF作为等量关系进行解答即可. ③设⊙Q与直线CD的切点为G,连接QG,由C、D两点的坐标不难判断出∠CDQ=45°,那么△QGD为等腰直角三角形,即QD ²=2QG ²=2QB ²,设出点Q的坐标,然后用Q点纵坐标表达出QD、QB的长,根据上面的等式列方程即可求出点Q的坐标. 详解: (1)∵y=ax2﹣2ax﹣3a=a(x﹣1)2﹣4a, ∴D(1,﹣4a). (2)①∵以AD为直径的圆经过点C, ∴△ACD为直角三角形,且∠ACD=90°; 由y=ax2﹣2ax﹣3a=a(x﹣3)(x+1)知,A(3,0)、B(﹣1,0)、C(0,﹣3a),则: AC2=9a2+9、CD2=a2+1、AD2=16a2+4 由勾股定理得:AC2+CD2=AD2,即:9a2+9+a2+1=16a2+4, 化简,得:a2=1,由a<0,得:a=﹣1, ②∵a=﹣1, ∴抛物线的解析式:y=﹣x2+2x+3,D(1,4). ∵将△OBE绕平面内某一点旋转180°得到△PMN, ∴PM∥x轴,且PM=OB=1; 设M(x,﹣x2+2x+3),则OF=x,MF=﹣x2+2x+3,BF=OF+OB=x+1; ∵BF=2MF, ∴x+1=2(﹣x2+2x+3),化简,得:2x2﹣3x﹣5=0 解得:x1=﹣1(舍去)、x2=. ∴M(,)、N(,). ③设⊙Q与直线CD的切点为G,连接QG,过C作CH⊥QD于H,如下图: ∵C(0,3)、D(1,4), ∴CH=DH=1,即△CHD是等腰直角三角形, ∴△QGD也是等腰直角三角形,即:QD2=2QG2; 设Q(1,b),则QD=4﹣b,QG2=QB2=b2+4; 得:(4﹣b)2=2(b2+4), 化简,得:b2+8b﹣8=0,解得:b=﹣4±2; 即点Q的坐标为(1,)或(1,).
复制答案
考点分析:
相关试题推荐

如图,⊙O中,AB是⊙O的直径,G为弦AE的中点,连接OG并延长交⊙O于点D,连接BDAE于点F,延长AE至点C,使得FC=BC,连接BC

(1)求证:BC是⊙O的切线;

(2)O的半径为5,tanA=,求FD的长.

 

查看答案

某商城销售A,B两种自行车.A型自行车售价为2 100/辆,B型自行车售价为1 750/辆,每辆A型自行车的进价比每辆B型自行车的进价多400元,商城用80 000元购进A型自行车的数量与用64 000元购进B型自行车的数量相等.

(1)求每辆A,B两种自行车的进价分别是多少?

(2)现在商城准备一次购进这两种自行车共100辆,设购进A型自行车m辆,这100辆自行车的销售总利润为y元,要求购进B型自行车数量不超过A型自行车数量的2倍,总利润不低于13 000元,求获利最大的方案以及最大利润.

 

查看答案

如图,一艘船在A处望见灯塔E在北偏东60°方向上,此船沿正东方向航行60海里后到达B处,在B处测得灯塔E在北偏东15°方向上.

(1)求∠AEB的度数;

(2)①求A处到灯塔E的距离AE

②已知灯塔E周围40海里内有暗礁,问:此船继续向东方向航行,有无触礁危险?(参考数据:≈1.414,≈1.732)

 

查看答案

在大课间活动中,体育老师随机抽取了七年级甲、乙两班部分女学生进行仰卧起坐的测试,并对成绩进行统计分析,绘制了频数分布表和统计图,请你根据图表中的信息完成下列问题:

 

频数

频率

第一组(0x15)

3

0.15

第二组(15x30)

6

a

第三组(30x45)

7

0.35

第四组(45x60)

b

0.20

 

(1)频数分布表中a=_____,b=_____,并将统计图补充完整;

(2)如果该校七年级共有女生180人,估计仰卧起坐能够一分钟完成3030次以上的女学生有多少人?

(3)已知第一组中只有一个甲班学生,第四组中只有一个乙班学生,老师随机从这两个组中各选一名学生谈心得体会,则所选两人正好都是甲班学生的概率是多少?

 

查看答案

如图,在平行四边形ABCD中,AB<BC

1)利用尺规作图,在BC边上确定点E,使点E到边ABAD的距离相等(不写作法,保留作图痕迹);

2)若BC=7CD=5,求CE的长.

 

查看答案
试题属性

Copyright @ 2008-2019 满分5 学习网 ManFen5.COM. All Rights Reserved.