满分5 > 初中数学试题 >

已知正方形ABCD中,E为对角线BD上一点,过E点作EF⊥BD交BC于F,连接D...

已知正方形ABCD中,E为对角线BD上一点,过E点作EF⊥BD交BC于F,连接DF,G为DF中点,连接EG,CG.

(1)求证:EG=CG且EG⊥CG;

(2)将图①中△BEF绕B点逆时针旋转45º,如图②所示,取DF中点G,连接EG,CG.问(1)中的结论是否仍然成立?若成立,请给出证明;若不成立,请说明理由.

(3)将图①中△BEF绕B点旋转任意角度,如图③所示,再连接相应的线段,问(1)中的结论是否仍然成立?

 

【解析】 (1)CG=EG (2)(1)中结论没有发生变化,即EG=CG. 证明:连接AG,过G点作MN⊥AD于M,与EF的延长线交于N点. 在△DAG与△DCG中, ∵ AD=CD,∠ADG=∠CDG,DG=DG, ∴ △DAG≌△DCG. ∴ AG=CG. 在△DMG与△FNG中, ∵ ∠DGM=∠FGN,FG=DG,∠MDG=∠NFG, ∴ △DMG≌△FNG. ∴ MG=NG 在矩形AENM中,AM=EN. 在Rt△AMG 与Rt△ENG中, ∵ AM=EN, MG=NG, ∴ △AMG≌△ENG. ∴ AG=EG ∴ EG=CG. (3)(1)中的结论仍然成立. 【解析】 试题(1)利用直角三角形斜边上的中线等于斜边的一半,可证出CG=EG. (2)结论仍然成立,连接AG,过G点作MN⊥AD于M,与EF的延长线交于N点;再证明△DAG≌△DCG,得出AG=CG;再证出△DMG≌△FNG,得到MG=NG;再证明△AMG≌△ENG,得出AG=EG;最后证出CG=EG. (3)结论依然成立.还知道EG⊥CG; 试题解析: 【解析】 (1)证明:在Rt△FCD中, ∵G为DF的中点, ∴ , 同理,在Rt△DEF中, , ∴CG=EG; (2)(1)中结论仍然成立,即EG=CG; 连接AG,过G点作MN⊥AD于M,与EF的延长线交于N点,如图所示: 在△DAG与△DCG中, ∵AD=CD,∠ADG=∠CDG,DC=DC, ∴△DAG≌△DCG, ∴AG=CG, 在△DMG与△FNG中, ∵∠DGM=∠FGN,DG=FG,∠MDG=∠NFG, ∴△DMG≌△FNG, ∴MG=NG, 在矩形AENM中,AM=EN., 在Rt△AMG与Rt△ENG中, ∵AM=EN,MG=NG, ∴△AMG≌△ENG, ∴AG=EG, ∴EG=CG, (3)(1)中的结论仍然成立,即EG=CG且EG⊥CG。 过F作CD的平行线并延长CG交于M点,连接EM、EC,过F作FN垂直于AB于N,如图所示: 由于G为FD中点,易证△CDG≌△MFG,得到CD=FM, 又因为BE=EF,易证∠EFM=∠EBC,则△EFM≌△EBC,∠FEM=∠BEC,EM=EC ∵∠FEC+∠BEC=90°, ∴∠FEC+∠FEM=90°,即∠MEC=90°, ∴△MEC是等腰直角三角形, ∵G为CM中点, ∴EG=CG,EG⊥CG。
复制答案
考点分析:
相关试题推荐

某网店销售甲、乙两种羽毛球,已知甲种羽毛球每筒的售价比乙种羽毛球多15元,王老师从该网店购买了2筒甲种羽毛球和3筒乙种羽毛球,共花费255元.

(1)该网店甲、乙两种羽毛球每筒的售价各是多少元?

(2)根据消费者需求,该网店决定用不超过8780元购进甲、乙两种羽毛球共200筒,且甲种羽毛球的数量大于乙种羽毛球数量的,已知甲种羽毛球每筒的进价为50元,乙种羽毛球每筒的进价为40元.

①若设购进甲种羽毛球m筒,则该网店有哪几种进货方案?

②若所购进羽毛球均可全部售出,请求出网店所获利润W(元)与甲种羽毛球进货量m(筒)之间的函数关系式,并说明当m为何值时所获利润最大?最大利润是多少?

 

查看答案

如图,AB是⊙O的弦,过AB的中点EECOA,垂足为C,过点B作直线BDCE的延长线于点D,使得DB=DE.

(1)求证:BD是⊙O的切线;

(2)若AB=12,DB=5,求AOB的面积.

 

查看答案

为积极响应市委,市政府提出的实现伟大中国梦,建设美丽鄂尔多斯的号召,康巴什区某校在八,九年级开展征文活动,校学生会对这两个年级各班内的投稿情况进行统计,并制成了如图所示的两幅不完整的统计图.

(1)扇形统计图中投稿篇数为3所对应的扇形的圆心角的度数是_____;该校八,九年级各班在这一周内投稿的平均篇数是______;并将该条形统计图补充完整.

(2)如果要求该校八、九年级的投稿班级个数为30个,估计投稿篇数为5篇的班级个数.

(3)在投稿篇数为9篇的4个班级中,八,九年级各有两个班,校学生会准备从这四个班级中选出两个班参加全市的表彰会,请你用列表法或画树状图的方法求出所选两个班正好不在同一年级的概率.

  

 

查看答案

如图,四边形ABCD是正方形,点GBC边上任意一点,DEAG于点E,BFDE且交AG于点F.

(1)如图1,求证:AE=BF;

(2)连接DF,若tanBAG=,AB=2,求△ADF的面积.

 

查看答案

如图,已知点A(1,a)是反比例函数y1=的图象上一点,直线y2=﹣与反比例函数y1=的图象的交点为点BD,且B(3,﹣1),求:

Ⅰ)求反比例函数的解析式;

Ⅱ)求点D坐标,并直接写出y1y2x的取值范围;

Ⅲ)动点Px,0)在x轴的正半轴上运动,当线段PA与线段PB之差达到最大时,求点P的坐标.

 

查看答案
试题属性

Copyright @ 2008-2019 满分5 学习网 ManFen5.COM. All Rights Reserved.