满分5 > 初中数学试题 >

抛物线y=ax2+bx+3(a≠0)经过点A(﹣1,0),B(,0),且与y轴相...

抛物线y=ax2+bx+3(a≠0)经过点A(﹣1,0),B(,0),且与y轴相交于点C.

(1)求这条抛物线的表达式;

(2)求∠ACB的度数;

(3)设点D是所求抛物线第一象限上一点,且在对称轴的右侧,点E在线段AC上,且DEAC,当DCEAOC相似时,求点D的坐标.

 

(1)y=﹣2x2+x+3;(2)∠ACB=45°;(3)D(,). 【解析】 试题把点的坐标代入即可求得抛物线的解析式. 作BH⊥AC于点H,求出的长度,即可求出∠ACB的度数. 延长CD交x轴于点G,△DCE∽△AOC,只可能∠CAO=∠DCE.求出直线的方程,和抛物线的方程联立即可求得点的坐标. 试题解析:(1)由题意,得 解得. ∴这条抛物线的表达式为. (2)作BH⊥AC于点H, ∵A点坐标是(-1,0),C点坐标是(0,3),B点坐标是(,0), ∴AC=,AB=,OC=3,BC=. ∵,即∠BAD=, ∴. Rt△ BCH中,,BC=,∠BHC=90º, ∴. 又∵∠ACB是锐角,∴. (3)延长CD交x轴于点G, ∵Rt△ AOC中,AO=1,AC=, ∴. ∵△DCE∽△AOC,∴只可能∠CAO=∠DCE. ∴AG = CG. ∴. ∴AG=5.∴G点坐标是(4,0). ∵点C坐标是(0,3),∴. ∴ 解得,(舍). ∴点D坐标是  
复制答案
考点分析:
相关试题推荐

如图,AB为⊙O的直径,AB=AC,BC交⊙O于点D,AC交⊙O于点E,BAC=45°.

(1)求∠EBC的度数;

(2)求证:BD=CD.

 

查看答案

(1)如图,已知ABC,请你作出AB边上的高CD,AC边上的中线BE,角平分线AF(不写作法,保留痕迹)

(2)如图,直线l表示一条公路,点A,点B表示两个村庄.现要在公路上造一个车站,并使车站到两个村庄A,B的距离之和最短,问车站建在何处?请在图上标明地点,并说明理由.(要求尺规作图,不写作法)

 

查看答案

某校初一年级随机抽取30名学生,对5种活动形式:A、跑步,B、篮球,C、跳绳,D、乒乓球,E、武术,进行了随机抽样调查,每个学生只能选择一种运动行驶,调查统计结果,绘制了不完整的统计图.

(1)将条形图补充完整;

(2)如果初一年级有900名学生,估计喜爱跳绳运动的有多少人?

(3)某次体育课上,老师在5个一样的乒乓球上分别写上A、B、C、D、E,放在不透明的口袋中,每人每次摸出一个球并且只摸一次,然后放回,按照球上的标号参加对应活动,小明和小刚是好朋友,请用树状图或列表法的方法,求他俩恰好是同一种活动形式的概率.

 

查看答案

如图,已知ACBD相交于点O,且ABDC,OA=OB.

求证:OC=OD.

 

查看答案

计算:

(1)+(﹣3)2﹣(﹣1)0

(2)化简:(2+m)(2﹣m)+m(m﹣1).

 

查看答案
试题属性

Copyright @ 2008-2019 满分5 学习网 ManFen5.COM. All Rights Reserved.