满分5 > 初中数学试题 >

抛物线y=ax2+bx+3(a≠0)经过点A(﹣1,0),B(,0),且与y轴相...

抛物线y=ax2+bx+3(a≠0)经过点A(﹣1,0),B(,0),且与y轴相交于点C.

(1)求这条抛物线的表达式;

(2)求∠ACB的度数;

(3)设点D是所求抛物线第一象限上一点,且在对称轴的右侧,点E在线段AC上,且DEAC,当DCEAOC相似时,求点D的坐标.

 

(1)y=﹣2x2+x+3;(2)∠ACB=45°;(3)D(,). 【解析】 试题把点的坐标代入即可求得抛物线的解析式. 作BH⊥AC于点H,求出的长度,即可求出∠ACB的度数. 延长CD交x轴于点G,△DCE∽△AOC,只可能∠CAO=∠DCE.求出直线的方程,和抛物线的方程联立即可求得点的坐标. 试题解析:(1)由题意,得 解得. ∴这条抛物线的表达式为. (2)作BH⊥AC于点H, ∵A点坐标是(-1,0),C点坐标是(0,3),B点坐标是(,0), ∴AC=,AB=,OC=3,BC=. ∵,即∠BAD=, ∴. Rt△ BCH中,,BC=,∠BHC=90º, ∴. 又∵∠ACB是锐角,∴. (3)延长CD交x轴于点G, ∵Rt△ AOC中,AO=1,AC=, ∴. ∵△DCE∽△AOC,∴只可能∠CAO=∠DCE. ∴AG = CG. ∴. ∴AG=5.∴G点坐标是(4,0). ∵点C坐标是(0,3),∴. ∴ 解得,(舍). ∴点D坐标是  
复制答案
考点分析:
相关试题推荐

RtABC中,BC=2,AC=4,点DAB的中点,PAC边上一动点.BDP沿着PD所在的直线翻折,点B的对应点为E.

(1)若PDAB,求AP.

(2)当AD=PE时,求证:四边形BDEP为菱形.

(3)若PDEABC重合部分的面积等于PAB面积的,求AP.

 

查看答案

如图,直线轴、轴分别相交于点C、B,与直线相交于点A.

(1)求A点坐标;

(2)如果在y轴上存在一点P,使△OAP是以OA为底边的等腰三角形,求P点坐标;

(3)在直线上是否存在点Q,使△OAQ的面积等于6?若存在,请求出Q点的坐标,若不存在,请说明理由.

 

查看答案

如图,AB是⊙O直径,点C在⊙O上,

AD平分∠CAB,BD是⊙O的切线,AD与BC相交于点E.

(1)求证:BD=BE;

(2)若DE=2,BD=,求CE的长.

 

查看答案

为了提高产品的附加值,某公司计划将研发生产的1200件新产品进行精加工后再投放市场.现有甲、乙两个工厂都具备加工能力,公司派出相关人员分别到这两个工厂了解情况,获得如下信息:

信息一:甲工厂单独加工完成这批产品比乙工厂单独加工完成这批产品多用10天;

信息二:乙工厂每天加工的数量是甲工厂每天加工数量的1.5倍.

根据以上信息,求甲、乙两个工厂每天分别能加工多少件新产品.

 

查看答案

ABCD中,E、F分别是AD、BC上的点,将平行四边形ABCD沿EF所在直线翻折,使点B与点D重合,且点A落在点A′处.

(1)求证:A′ED≌△CFD;

(2)连结BE,若∠EBF=60°,EF=3,求四边形BFDE的面积.

 

查看答案
试题属性

Copyright @ 2008-2019 满分5 学习网 ManFen5.COM. All Rights Reserved.