满分5 > 初中数学试题 >

如图,直线与轴、轴分别相交于点C、B,与直线相交于点A. (1)求A点坐标; (...

如图,直线轴、轴分别相交于点C、B,与直线相交于点A.

(1)求A点坐标;

(2)如果在y轴上存在一点P,使△OAP是以OA为底边的等腰三角形,求P点坐标;

(3)在直线上是否存在点Q,使△OAQ的面积等于6?若存在,请求出Q点的坐标,若不存在,请说明理由.

 

(1)A点坐标是(2,3);(2)P点坐标是(0,);(3)存在;点Q是坐标是((,))或(,)). 【解析】(1)联立方程,解方程即可求得; (2)设P点坐标是(0,y),根据勾股定理列出方程,解方程即可求得; (3)分两种情况:①当Q点在线段AB上:作QD⊥y轴于点D,则QD=x,根据S△OBQ=S△OAB﹣S△OAQ列出关于x的方程解方程求得即可;②当Q点在AC的延长线上时,作QD⊥x轴于点D,则QD=﹣y,根据S△OCQ=S△OAQ﹣S△OAC列出关于y的方程解方程求得即可. (1)解方程组:得:, ∴A点坐标是(2,3); (2)设P点坐标是(0,y). ∵△OAP是以OA为底边的等腰三角形,∴OP=PA,∴22+(3﹣y)2=y2,解得:y=,∴P点坐标是(0,). 故答案为:(0,); (3)存在; 由直线y=﹣2x+7可知B(0,7),C(,0). ∵S△AOC=××3=<6,S△AOB=×7×2=7>6,∴Q点有两个位置:Q在线段AB上和AC的延长线上,设点Q的坐标是(x,y). 当Q点在线段AB上:作QD⊥y轴于点D,如图①,则QD=x,∴S△OBQ=S△OAB﹣S△OAQ=7﹣6=1,∴OB•QD=1,即×7x=1,∴x=,把x=代入y=﹣2x+7,得y=,∴Q的坐标是(); 当Q点在AC的延长线上时,作QD⊥x轴于点D,如图②则QD=﹣y,∴S△OCQ=S△OAQ﹣S△OAC=6﹣=OC•QD=,即××(﹣y)=,∴y=﹣,把y=﹣代入y=﹣2x+7,解得x=,∴Q的坐标是(,﹣). 综上所述:点Q是坐标是()或(,﹣).
复制答案
考点分析:
相关试题推荐

如图,AB是⊙O直径,点C在⊙O上,

AD平分∠CAB,BD是⊙O的切线,AD与BC相交于点E.

(1)求证:BD=BE;

(2)若DE=2,BD=,求CE的长.

 

查看答案

为了提高产品的附加值,某公司计划将研发生产的1200件新产品进行精加工后再投放市场.现有甲、乙两个工厂都具备加工能力,公司派出相关人员分别到这两个工厂了解情况,获得如下信息:

信息一:甲工厂单独加工完成这批产品比乙工厂单独加工完成这批产品多用10天;

信息二:乙工厂每天加工的数量是甲工厂每天加工数量的1.5倍.

根据以上信息,求甲、乙两个工厂每天分别能加工多少件新产品.

 

查看答案

ABCD中,E、F分别是AD、BC上的点,将平行四边形ABCD沿EF所在直线翻折,使点B与点D重合,且点A落在点A′处.

(1)求证:A′ED≌△CFD;

(2)连结BE,若∠EBF=60°,EF=3,求四边形BFDE的面积.

 

查看答案

某校九年级开展征文活动,征文主题只能从爱国”“敬业”“诚信”“友善四个主题选择一个,九年级每名学生按要求都上交了一份征文,学校为了解选择各种征文主题的学生人数,随机抽取了部分征文进行了调查,根据调查结果绘制成如下两幅不完整的统计图.

(1)求共抽取了多少名学生的征文;

(2)将上面的条形统计图补充完整;

(3)在扇形统计图中,选择爱国主题所对应的圆心角是多少;

(4)如果该校九年级共有1200名学生,请估计选择以友善为主题的九年级学生有多少名.

 

查看答案

若m是不等式组的最大整数解,求:1+m+m2+…+m2018的值.

 

查看答案
试题属性

Copyright @ 2008-2019 满分5 学习网 ManFen5.COM. All Rights Reserved.