满分5 > 初中数学试题 >

(1) 如图1,在正方形ABCD中,点E,F分别在边BC,CD上,AE,BF交于...

(1) 如图1,在正方形ABCD中,点E,F分别在边BC,CD上,AE,BF交于点O,AOF=90°.求证:BE=CF.

(2) 如图2,在正方形ABCD中,点E,H,F,G分别在边AB,BC,CD,DA上,EF,GH交于点O,FOH=90°, EF=4.求GH的长.

(3) 已知点E,H,F,G分别在矩形ABCD的边AB,BC,CD,DA上,EF,GH交于点O,FOH=90°,EF=4. 直接写出下列两题的答案:

如图3,矩形ABCD由2个全等的正方形组成,求GH的长

 如图4,矩形ABCD由n个全等的正方形组成,求GH的长(用n的代数式表示).

 

(1) 证明:如图1, ∵ 四边形ABCD为正方形, ∴ AB=BC,∠ABC=∠BCD=90°, ∴ ∠EAB+∠AEB=90°. ∵ ∠EOB=∠AOF=90°, ∴ ∠FBC+∠AEB=90°,∴ ∠EAB=∠FBC, ∴ △ABE≌△BCF , ∴ BE=CF. ………………3分 (2) 【解析】 如图2,过点A作AM//GH交BC于M, 过点B作BN//EF交CD于N,AM与BN交于点O/, 则四边形AMHG和四边形BNFE均为平行四边形, ∴ EF=BN,GH=AM, ∵ ∠FOH=90°, AM//GH,EF//BN, ∴ ∠NO/A=90°, 故由(1)得, △ABM≌△BCN, ∴ AM=BN, ∴ GH=EF=4. ………………6分 (3) ① 8.② 4n. ………………8分 【解析】(1)关键是证出∠CBF=∠BAE,可利用同角的余角相等得出,从而结合已知条件,利用SAS可证△ABE≌△BCF,于是BE=CF; (2)过A作AM∥GH,交BC于M,过B作BN∥EF,交CD于N,AMBN交于点O′,利用平行四边形的判定,可知四边形AMHG和四边形BNFE是▱,那么AM=GH,BN=EF,由于∠EOH=90°,结合平行线的性质,可知∠AO′N=90°,那么此题就转化成(1),求△BCN≌△ABM即可; (3)①若是两个正方形,则GH=2EF=8;②若是n个正方形,那么GH=n•4=4n.  
复制答案
考点分析:
相关试题推荐

计算(1)(0++|2﹣|

(2)()÷+(2+)(2﹣

 

查看答案

如图,已知动点A在函数y=(x>0)的图象上,ABx轴于点B,ACy轴于点C,延长CA至点D,使AD=AB,延长BA至点E,使AE=AC,直线DE分别交x轴,y轴于点P,Q,当QE:DP=9:25时,图中的阴影部分的面积等于___

 

查看答案

如图,直线ABCD,∠A=70°,∠C=40°,则∠E等于___________

 

查看答案

有下列四种说法:①任意两个等腰三角形都相似;②有两角和一边对应相等的两个三角形全等;③真命题的逆命题都是真命题;④任意两个等腰直角三角形都相似.其中叙述正确的有(把你认为叙述正确的序号全部填上)_____

 

查看答案

如图,ABCDE是正五边形,已知AG=1,则FG+JH+CD=_____

 

查看答案
试题属性

Copyright @ 2008-2019 满分5 学习网 ManFen5.COM. All Rights Reserved.