满分5 > 初中数学试题 >

如图①,在等腰△ABC和△ADE中,AB=AC,AD=AE,且∠BAC=∠DAE...

如图①,在等腰ABCADE中,AB=AC,AD=AE,且∠BAC=DAE=120°.

(1)求证:ABD≌△ACE;

(2)把ADE绕点A逆时针方向旋转到图②的位置,连接CD,点M、P、N分别为DE、DC、BC的中点,连接MN、PN、PM,判断PMN的形状,并说明理由;

(3)在(2)中,把ADE绕点A在平面内自由旋转,若AD=4,AB=6,请分别求出PMN周长的最小值与最大值.

 

(1)证明见解析;(2)△PMN是等边三角形.理由见解析;(3)△PMN周长的最小值为3,最大值为15. 【解析】 (1)由∠BAC=∠DAE=120°,可得∠BAD=∠CAE,再由AB=AC,AD=AE,利用SAS即可判定△ABD≌△ADE;(2)△PMN是等边三角形,利用三角形的中位线定理可得PM=CE,PM∥CE,PN=BD,PN∥BD,同(1)的方法可得BD=CE,即可得PM=PN,所以△PMN是等腰三角形;再由PM∥CE,PN∥BD,根据平行线的性质可得∠DPM=∠DCE,∠PNC=∠DBC,因为∠DPN=∠DCB+∠PNC=∠DCB+∠DBC, 所以∠MPN=∠DPM+∠DPN=∠DCE+∠DCB+∠DBC=∠BCE+∠DBC=∠ACB+∠ACE+∠DBC=∠ACB+∠ABD+∠DBC=∠ACB+∠ABC,再由∠BAC=120°,可得∠ACB+∠ABC=60°,即可得∠MPN=60°,所以△PMN是等边三角形;(3)由(2)知,△PMN是等边三角形,PM=PN=BD,所以当PM最大时,△PMN周长最大,当点D在AB上时,BD最小,PM最小,求得此时BD的长,即可得△PMN周长的最小值;当点D在BA延长线上时,BD最大,PM的值最大,此时求得△PMN周长的最大值即可. (1)因为∠BAC=∠DAE=120°, 所以∠BAD=∠CAE,又AB=AC,AD=AE, 所以△ABD≌△ADE; (2)△PMN是等边三角形。 理由:∵点P,M分别是CD,DE的中点, ∴PM=CE,PM∥CE, ∵点N,M分别是BC,DE的中点, ∴PN=BD,PN∥BD, 同(1)的方法可得BD=CE, ∴PM=PN, ∴△PMN是等腰三角形, ∵PM∥CE,∴∠DPM=∠DCE, ∵PN∥BD,∴∠PNC=∠DBC, ∵∠DPN=∠DCB+∠PNC=∠DCB+∠DBC, ∴∠MPN=∠DPM+∠DPN=∠DCE+∠DCB+∠DBC=∠BCE+∠DBC =∠ACB+∠ACE+∠DBC=∠ACB+∠ABD+∠DBC=∠ACB+∠ABC, ∵∠BAC=120°,∴∠ACB+∠ABC=60°, ∴∠MPN=60°, ∴△PMN是等边三角形。 (3)由(2)知,△PMN是等边三角形,PM=PN=BD, ∴PM最大时,△PMN周长最大, ∴点D在AB上时,BD最小,PM最小, ∴BD=AB-AD=2,△PMN周长的最小值为3; 点D在BA延长线上时,BD最大,PM最大, ∴BD=AB+AD=10,△PMN周长的最大值为15。 故答案为:△PMN周长的最小值为3,最大值为15
复制答案
考点分析:
相关试题推荐

2013年某企业按餐厨垃圾处理费25/吨,建筑垃圾处理费16/吨标准,共支付餐厨和建筑垃圾处理费5200元,从2014年元月起,收费标准上调为:餐厨垃圾处理费100/吨,建筑垃圾处理费30/吨,若该企业2014年处理的这两种垃圾数量与2013年相比没有变化,就要多支付垃圾处理费8800元,

1)该企业2013年处理的餐厨垃圾和建筑垃圾各多少吨?

2)该企业计划2014年将上述两种垃圾处理量减少到240吨,且建筑垃圾处理费不超过餐厨垃圾处理量的3倍,则2014年该企业最少需要支付这两种垃圾处理费共多少元?

 

查看答案

问题:探究函数y=|x|﹣2的图象与性质.

小华根据学习函数的经验,对函数y=|x|﹣2的图象与性质进行了探究.

下面是小华的探究过程,请补充完整:

(1)在函数y=|x|﹣2中,自变量x可以是任意实数;

(2)如表是yx的几组对应值.

x

﹣3

﹣2

﹣1

0

1

2

3

y

1

0

﹣1

﹣2

﹣1

0

m

 

m=     

②若A(n,8),B(10,8)为该函数图象上不同的两点,则n=     

(3)如图,在平面直角坐标系xOy中,描出以上表中各对对应值为坐标的点.并根据描出的点,画出该函数的图象

根据函数图象可得:

①该函数的最小值为     

②已知直线与函数y=|x|﹣2的图象交于C、D两点,当y1≥yx的取值范围是     

 

查看答案

如图,在数学活动课上,小丽为了测量校园内旗杆AB的高度,站在教学楼的C处测得旗杆底端B的俯角为45°,测得旗杆顶端A的仰角为30°.已知旗杆与教学楼的距离BD=9m,请你帮她求出旗杆的高度(结果保留根号).

 

查看答案

如图,四边形OABC是平行四边形,以O为圆心,OA为半径的圆交ABD,延长AOOE,连接CD,CE,若CE⊙O的切线,解答下列问题:

(1)求证:CD⊙O的切线;

(2)若BC=4,CD=6,求平行四边形OABC的面积.

 

查看答案

近日,深圳市人民政府发布了《深圳市可持续发展规划》,提出了要做可持续发展的全球创新城市的目标,某初中学校了解学生的创新意识,组织了全校学生参加创新能力大赛,从中抽取了部分学生成绩,分为5组:A50~60;B60~70;C70~80;D80~90;E90~100,统计后得到如图所示的频数分布直方图(每组含最小值不含最大值)和扇形统计图.

(1)抽取学生的总人数是     人,扇形C的圆心角是     °;

(2)补全频数直方图;

(3)该校共有2200名学生,若成绩在70分以下(不含70分)的学生创新意识不强,有待进一步培养,则该校创新意识不强的学生约有多少人?

 

查看答案
试题属性

Copyright @ 2008-2019 满分5 学习网 ManFen5.COM. All Rights Reserved.