满分5 > 初中数学试题 >

2013年某企业按餐厨垃圾处理费25元/吨,建筑垃圾处理费16元/吨标准,共支付...

2013年某企业按餐厨垃圾处理费25/吨,建筑垃圾处理费16/吨标准,共支付餐厨和建筑垃圾处理费5200元,从2014年元月起,收费标准上调为:餐厨垃圾处理费100/吨,建筑垃圾处理费30/吨,若该企业2014年处理的这两种垃圾数量与2013年相比没有变化,就要多支付垃圾处理费8800元,

1)该企业2013年处理的餐厨垃圾和建筑垃圾各多少吨?

2)该企业计划2014年将上述两种垃圾处理量减少到240吨,且建筑垃圾处理费不超过餐厨垃圾处理量的3倍,则2014年该企业最少需要支付这两种垃圾处理费共多少元?

 

(1)2013年该企业处理的餐厨垃圾为80吨,建筑垃圾为200吨; (2)2014年该企业最少需要支付这两种垃圾处理费共11400元. 【解析】 试题(1)设2013年该企业处理的餐厨垃圾为x吨,建筑垃圾为y吨,根据题意列出方程组,解此方程组即可得到答案. (2)设2014年该企业处理的餐厨垃圾为x吨,建筑垃圾为y吨,需支付的这两种垃圾处理费是z元,再由x+y=240可得z=100x+30y=100x+30(240-x)="70x+7200" ,x≥60.再根据z的值随x的增大而增大,所以当x=60时,z最小,代入求值即可. 试题解析:(1)设2013年该企业处理的餐厨垃圾为x吨,建筑垃圾为y吨,根据题意得 ,解得,即2013年该企业处理的餐厨垃圾为80吨,建筑垃圾为200吨. (2)设2014年该企业处理的餐厨垃圾为x吨,建筑垃圾为y吨,需支付的这两种垃圾处理费是z元,根据题意得x+y=240且y≤3x,解得x≥60. 则有z=100x+30y=100x+30(240-x)=70x+7200. 由于z的值随x的增大而增大,所以当x=60时,z最小,最小值为70×60+7200=11400元,即2014年该企业最少需要支付这两种垃圾处理费共11400元.
复制答案
考点分析:
相关试题推荐

问题:探究函数y=|x|﹣2的图象与性质.

小华根据学习函数的经验,对函数y=|x|﹣2的图象与性质进行了探究.

下面是小华的探究过程,请补充完整:

(1)在函数y=|x|﹣2中,自变量x可以是任意实数;

(2)如表是yx的几组对应值.

x

﹣3

﹣2

﹣1

0

1

2

3

y

1

0

﹣1

﹣2

﹣1

0

m

 

m=     

②若A(n,8),B(10,8)为该函数图象上不同的两点,则n=     

(3)如图,在平面直角坐标系xOy中,描出以上表中各对对应值为坐标的点.并根据描出的点,画出该函数的图象

根据函数图象可得:

①该函数的最小值为     

②已知直线与函数y=|x|﹣2的图象交于C、D两点,当y1≥yx的取值范围是     

 

查看答案

如图,在数学活动课上,小丽为了测量校园内旗杆AB的高度,站在教学楼的C处测得旗杆底端B的俯角为45°,测得旗杆顶端A的仰角为30°.已知旗杆与教学楼的距离BD=9m,请你帮她求出旗杆的高度(结果保留根号).

 

查看答案

如图,四边形OABC是平行四边形,以O为圆心,OA为半径的圆交ABD,延长AOOE,连接CD,CE,若CE⊙O的切线,解答下列问题:

(1)求证:CD⊙O的切线;

(2)若BC=4,CD=6,求平行四边形OABC的面积.

 

查看答案

近日,深圳市人民政府发布了《深圳市可持续发展规划》,提出了要做可持续发展的全球创新城市的目标,某初中学校了解学生的创新意识,组织了全校学生参加创新能力大赛,从中抽取了部分学生成绩,分为5组:A50~60;B60~70;C70~80;D80~90;E90~100,统计后得到如图所示的频数分布直方图(每组含最小值不含最大值)和扇形统计图.

(1)抽取学生的总人数是     人,扇形C的圆心角是     °;

(2)补全频数直方图;

(3)该校共有2200名学生,若成绩在70分以下(不含70分)的学生创新意识不强,有待进一步培养,则该校创新意识不强的学生约有多少人?

 

查看答案

先化简,再求值:,其中

 

查看答案
试题属性

Copyright @ 2008-2019 满分5 学习网 ManFen5.COM. All Rights Reserved.