满分5 > 初中数学试题 >

如图1,在平面直角坐标系xOy中,直线l:与x轴、y轴分别交于点A和点B(0,﹣...

如图1,在平面直角坐标系xOy中,直线l:x轴、y轴分别交于点A和点B(0,﹣1),抛物线经过点B,且与直线l的另一个交点为C(4,n).

(1)求n的值和抛物线的解析式;

(2)点D在抛物线上,且点D的横坐标为t(0<t<4).DEy轴交直线l于点E,点F在直线l上,且四边形DFEG为矩形(如图2).若矩形DFEG的周长为p,求pt的函数关系式以及p的最大值;

(3)M是平面内一点,将△AOB绕点M沿逆时针方向旋转90°后,得到△A1O1B1,点A、O、B的对应点分别是点A1、O1、B1.若△A1O1B1的两个顶点恰好落在抛物线上,请直接写出点A1的横坐标.

 

(1)y=x2﹣x﹣1;(2) ;当t=2时,p有最大值;(3)或; 【解析】 (1)把点B的坐标代入直线解析式求出m的值,再把点C的坐标代入直线求解即可得到n的值,然后利用待定系数法求二次函数解析式解答; (2)令y=0求出点A的坐标,从而得到OA、OB的长度,利用勾股定理列式求出AB的长,然后根据两直线平行,内错角相等可得∠ABO=∠DEF,再解直角三角形用DE表示出EF、DF,根据矩形的周长公式表示出p,利用直线和抛物线的解析式表示DE的长,整理即可得到P与t的关系式,再利用二次函数的最值问题解答; (3)根据逆时针旋转角为90°可得A1O1∥y轴时,B1O1∥x轴,然后分①点O1、B1在抛物线上时,表示出两点的横坐标,再根据纵坐标相同列出方程求解即可;②点A1、B1在抛物线上时,表示出点B1的横坐标,再根据两点的纵坐标相差A1O1的长度列出方程求解即可. (1)∵直线l:y=x+m经过点B(0,﹣1), ∴m=﹣1, ∴直线l的解析式为y=x﹣1, ∵直线l:y=x﹣1经过点C(4,n), ∴n=×4﹣1=2, ∵抛物线y=x2+bx+c经过点C(4,2)和点B(0,﹣1), ∴, 解得, ∴抛物线的解析式为y=x2﹣x﹣1; (2)令y=0,则x﹣1=0, 解得x=, ∴点A的坐标为(,0), ∴OA=, 在Rt△OAB中,OB=1, ∴AB=, ∵DE∥y轴, ∴∠ABO=∠DEF, 在矩形DFEG中,EF=DE•cos∠DEF=DE•, DF=DE•sin∠DEF=DE•, ∴p=2(DF+EF)=2(, ∵点D的横坐标为t(0<t<4), ∴D(t,t2﹣t﹣1),E(t,t﹣1), ∴DE=(t﹣1)﹣(t2﹣t﹣1)=﹣t2+2t, ∴p=×(﹣t2+2t)=﹣t2+t, ∵p=﹣(t﹣2)2+,且﹣<0, ∴当t=2时,p有最大值; (3)∵△AOB绕点M沿逆时针方向旋转90°, ∴A1O1∥y轴时,B1O1∥x轴,设点A1的横坐标为x, ①如图1,点O1、B1在抛物线上时,点O1的横坐标为x,点B1的横坐标为x+1, ∴x2﹣x﹣1=(x+1)2﹣(x+1)﹣1, 解得x=, ②如图2,点A1、B1在抛物线上时,点B1的横坐标为x+1,点A1的纵坐标比点B1的纵坐标大, ∴x2﹣x﹣1=(x+1)2﹣(x+1)﹣1+, 解得x=﹣, 综上所述,点A1的横坐标为或﹣.
复制答案
考点分析:
相关试题推荐

已知:如图,在梯形ABCD中,ABCD,∠D=90°,ADCD=2,点E在边AD上(不与点AD重合),∠CEB=45°,EB与对角线AC相交于点F,设DEx

(1)用含x的代数式表示线段CF的长;

(2)如果把△CAE的周长记作CCAE,△BAF的周长记作CBAF,设y,求y关于x的函数关系式,并写出它的定义域;

(3)当∠ABE的正切值是 时,求AB的长.

 

查看答案

如图所示一位运动员在距篮下4米处跳起投篮球运行的路线是抛物线当球运行的水平距离为2.5m达到最大高度3.5m然后准确落入篮圈.已知篮圈中心到地面的距离为3.05m

(1)建立如图所示的直角坐标系求抛物线的解析式

(2)该运动员身高1.8m在这次跳投中球在头顶上方0.25m处出手球出手时他跳离地面的高度是多少?

 

查看答案

如图,△ABC中,∠ACB=90°,点EBC上,以CE为直径的⊙OAB于点F,AO∥EF

(1)求证:AB⊙O的切线;

(2)如图2,连结CFAO于点G,交AE于点P,若BE=2,BF=4,求的值.

 

查看答案

某水果商场经销一种高档水果,原价每千克50元.

(1)连续两次降价后每千克32元,若每次下降的百分率相同,求每次下降的百分率;

(2)这种水果进价为每千克40元,若在销售等各个过程中每千克损耗或开支2.5元,经一次降价销售后商场不亏本,求一次下降的百分率的最大值.

 

查看答案

近年来,新能源汽车以其舒适环保、节能经济的优势受到热捧,随之而来的就是新能汽车销量的急速增加,当前市场上新能漂汽车从动力上分纯电动和混合动力两种,从用途上又分为乘用式和商用式两种,据中国汽车工业协会提供的信息,2017年全年新能源乘用车的累计销量为57.9万辆,其中,纯电动乘用车销量为46.8万辆,混合动力乘用车销量为11.1万辆; 2017年全年新能源商用车的累计销量为19.8万辆,其中,纯电动商用车销量为18.4万辆,混合动力商用车销量为1.4万辆,请根据以上材料解答下列问题:

(1)请用统计表表示我国2017年新能源汽车各类车型销量情况;

(2)小颖根据上述信息,计算出2017年我国新能源各类车型总销量为77.7万辆,并绘制了“2017年我国新能源汽车四类车型销量比例扇形统计图,如图1,请你将该图补充完整(其中的百分数精确到0.1%);

(3)2017年我国新能源乘用车销量最高的十个城市排名情况如图2,请根据图2中信息写出这些城市新能源乘用车销售情况的特点(写出一条即可);

(4)数据显示,201813月的新能源乘用车总销量排行榜上位居前四的厂家是比亚迪、北汽、上汽、江准,参加社会实践的大学生小王想对其中两个厂家进行深入调研,他将四个完全相同的乒乓球进行编号(用“1,2,3,4”依次对应上述四个厂家),并将乒乓球放入不透明的袋子中搅匀,从中一次拿出两个乒乓球,根据乒乓球上的编号决定要调研的厂家.求小王恰好调研比亚迪江淮这两个厂家的概率.

 

查看答案
试题属性

Copyright @ 2008-2019 满分5 学习网 ManFen5.COM. All Rights Reserved.