满分5 > 初中数学试题 >

已知:如图,在梯形ABCD中,AB∥CD,∠D=90°,AD=CD=2,点E在边...

已知:如图,在梯形ABCD中,ABCD,∠D=90°,ADCD=2,点E在边AD上(不与点AD重合),∠CEB=45°,EB与对角线AC相交于点F,设DEx

(1)用含x的代数式表示线段CF的长;

(2)如果把△CAE的周长记作CCAE,△BAF的周长记作CBAF,设y,求y关于x的函数关系式,并写出它的定义域;

(3)当∠ABE的正切值是 时,求AB的长.

 

(1)CF=;(2)y=(0<x<2);(3)AB=2.5. 【解析】 试题(1)根据等腰直角三角形的性质,求得∠DAC=∠ACD=45°,进而根据两角对应相等的两三角形相似,可得△CEF∽△CAE,然后根据相似三角形的性质和勾股定理可求解; (2)根据相似三角形的判定与性质,由三角形的周长比可求解; (3)由(2)中的相似三角形的对应边成比例,可求出AB的关系,然后可由∠ABE的正切值求解. 试题解析:(1)∵AD=CD. ∴∠DAC=∠ACD=45°, ∵∠CEB=45°, ∴∠DAC=∠CEB, ∵∠ECA=∠ECA, ∴△CEF∽△CAE, ∴, 在Rt△CDE中,根据勾股定理得,CE=, ∵CA=2, ∴, ∴CF=; (2)∵∠CFE=∠BFA,∠CEB=∠CAB, ∴∠ECA=180°﹣∠CEB﹣∠CFE=180°﹣∠CAB﹣∠BFA, ∵∠ABF=180°﹣∠CAB﹣∠AFB, ∴∠ECA=∠ABF, ∵∠CAE=∠ABF=45°, ∴△CEA∽△BFA, ∴y====(0<x<2), (3)由(2)知,△CEA∽△BFA, ∴, ∴, ∴AB=x+2, ∵∠ABE的正切值是, ∴tan∠ABE===, ∴x=, ∴AB=x+2=.  
复制答案
考点分析:
相关试题推荐

如图所示一位运动员在距篮下4米处跳起投篮球运行的路线是抛物线当球运行的水平距离为2.5m达到最大高度3.5m然后准确落入篮圈.已知篮圈中心到地面的距离为3.05m

(1)建立如图所示的直角坐标系求抛物线的解析式

(2)该运动员身高1.8m在这次跳投中球在头顶上方0.25m处出手球出手时他跳离地面的高度是多少?

 

查看答案

如图,△ABC中,∠ACB=90°,点EBC上,以CE为直径的⊙OAB于点F,AO∥EF

(1)求证:AB⊙O的切线;

(2)如图2,连结CFAO于点G,交AE于点P,若BE=2,BF=4,求的值.

 

查看答案

某水果商场经销一种高档水果,原价每千克50元.

(1)连续两次降价后每千克32元,若每次下降的百分率相同,求每次下降的百分率;

(2)这种水果进价为每千克40元,若在销售等各个过程中每千克损耗或开支2.5元,经一次降价销售后商场不亏本,求一次下降的百分率的最大值.

 

查看答案

近年来,新能源汽车以其舒适环保、节能经济的优势受到热捧,随之而来的就是新能汽车销量的急速增加,当前市场上新能漂汽车从动力上分纯电动和混合动力两种,从用途上又分为乘用式和商用式两种,据中国汽车工业协会提供的信息,2017年全年新能源乘用车的累计销量为57.9万辆,其中,纯电动乘用车销量为46.8万辆,混合动力乘用车销量为11.1万辆; 2017年全年新能源商用车的累计销量为19.8万辆,其中,纯电动商用车销量为18.4万辆,混合动力商用车销量为1.4万辆,请根据以上材料解答下列问题:

(1)请用统计表表示我国2017年新能源汽车各类车型销量情况;

(2)小颖根据上述信息,计算出2017年我国新能源各类车型总销量为77.7万辆,并绘制了“2017年我国新能源汽车四类车型销量比例扇形统计图,如图1,请你将该图补充完整(其中的百分数精确到0.1%);

(3)2017年我国新能源乘用车销量最高的十个城市排名情况如图2,请根据图2中信息写出这些城市新能源乘用车销售情况的特点(写出一条即可);

(4)数据显示,201813月的新能源乘用车总销量排行榜上位居前四的厂家是比亚迪、北汽、上汽、江准,参加社会实践的大学生小王想对其中两个厂家进行深入调研,他将四个完全相同的乒乓球进行编号(用“1,2,3,4”依次对应上述四个厂家),并将乒乓球放入不透明的袋子中搅匀,从中一次拿出两个乒乓球,根据乒乓球上的编号决定要调研的厂家.求小王恰好调研比亚迪江淮这两个厂家的概率.

 

查看答案

如图,在矩形ABCD中,点E,F分别是BC,DC上的一个动点,以EF为对称轴折叠△CEF,使点C的对称点G落在AD上,若AB=3,BC=5,则CF的取值范围为______

 

查看答案
试题属性

Copyright @ 2008-2019 满分5 学习网 ManFen5.COM. All Rights Reserved.