满分5 > 初中数学试题 >

如图,已知二次函数y=ax2+bx+4的图象与x轴交于点B(-2,0),点C(8...

如图,已知二次函数y=ax2+bx+4的图象与x轴交于点B(-2,0),点C(8,0),与y轴交于点A.

(1)求抛物线的解析式;

(2)连接AC,AB,若点N在线段BC上运动(不与点B,C重合),过点NNM∥AC,交AB于点M,当△AMN面积最大时,求N点的坐标;

(3)连接OM,在(2)的结论下,求OMAC的数量关系.

 

(1)y=-x2+x+4;(2)当n=3时,即N(3,0)时,△AMN的面积最大;(3)OM=AC. 【解析】 试题(1)由B、C的坐标,利用待定系数法可求得抛物线解析式; (2)可设N(n,0),则可用n表示出△ABN的面积,由NM∥AC,可求得,则可用n表示出△AMN的面积,再利用二次函数的性质可求得其面积最大时n的值,即可求得N点的坐标; (3)由N点坐标可求得M点为AB的中点,由直角三角形的性质可得OM=AB,在Rt△AOB和Rt△AOC中,可分别求得AB和AC的长,可求得AB与AC的关系,从而可得到OM和AC的数量关系. 试题解析:(1)将点B,点C的坐标分别代入y=ax2+bx+4可得 , 解得, ∴二次函数的表达式为y=﹣x2+x+4; (2)设点N的坐标为(n,0)(﹣2<n<8), 则BN=n+2,CN=8﹣n. ∵B(﹣2,0),C(8,0), ∴BC=10, 在y=﹣x2+x+4中,令x=0,可解得y=4, ∴点A(0,4),OA=4, ∴S△ABN=BN•OA=(n+2)×4=2(n+2), ∵MN∥AC, ∴ ∴, ∴ ∵﹣<0, ∴当n=3时,即N(3,0)时,△AMN的面积最大; (3)当N(3,0)时,N为BC边中点, ∵MN∥AC, ∴M为AB边中点, ∴OM=AB, ∵AB=,AC=, ∴AB=AC, ∴OM=AC.
复制答案
考点分析:
相关试题推荐

如图,矩形ABCD的两边长AB=18cm,AD=4cm,点P、Q分别从A、B同时出发,P在边AB上沿AB方向以每秒2cm的速度匀速运动,Q在边BC上沿BC方向以每秒1cm的速度匀速运动.设运动时间为x秒,PBQ的面积为y(cm2).

(1)求y关于x的函数关系式,并写出x的取值范围;

(2)求PBQ的面积的最大值.

 

查看答案

有一个抛物线型蔬菜大棚,将其截面放在如图所示的平面直角坐标系中,抛物线可以用函数y=ax2+bx来表示.已知大棚在地面上的宽度OA8米,距离O2米处的棚高BC米.

(1)求该抛物线的函数关系式;

(2)若借助横梁DE建一个门,要求门的高度不低于1.5米,则横梁DE的宽度最多是多少米?

 

查看答案

已知:如图,抛物线y=ax2+bx+cx轴交于点A(2,0),B(4,0),且过点C(0,4).

(1)求出抛物线的表达式和顶点坐标;

(2)请你求出抛物线向左平移3个单位长度,再向上平移1.5个单位长度后抛物线的表达式.

 

查看答案

如图,在平面直角坐标系中,P是抛物线y=-x2+3x上一点,且在x轴上方,过点P分别向x轴、y轴作垂线,得到矩形PMON.若矩形PMON的周长随点P的横坐标m增大而增大,则m的取值范围是_________.

 

查看答案

如图,抛物线y=ax2+bx+cx轴相交于点A,B(m+2,0),与y轴相交于点C,点D在该抛物线上,坐标为(m,c),则点A的坐标是________

 

查看答案
试题属性

Copyright @ 2008-2019 满分5 学习网 ManFen5.COM. All Rights Reserved.