下列说法中,正确的有( )
①平行四边形是中心对称图形;②两个全等三角形一定成中心对称;③中心对称图形的对称中心是连接两对称点的线段的中点;④一个图形若是轴对称图形,则一定不是中心对称图形;⑤一个图形若是中心对称图形,则一定不是轴对称图形.
A. 1个 B. 2个 C. 3个 D. 4个
将大写字母E绕点P按顺时针方向旋转90°得到的图形是( )
A. B.
C.
D.
下列图形,既是轴对称图形,又是中心对称图形的是( )
A. B.
C.
D.
如图,已知△ABC是边长为6cm的等边三角形,动点P、Q同时从A、B两点出发,分别沿AB、BC匀速运动,其中点P运动的速度是1cm/s,点Q运动的速度是2cm/s,当点Q到达点C时,P、Q两点都停止运动,设运动时间为t(s),解答下列问题:
(1)当t=2时,判断△BPQ的形状,并说明理由;
(2)设△BPQ的面积为S(cm2),求S与t的函数关系式;
(3)作QR//BA交AC于点R,连结PR,当t为何值时,△APR∽△PRQ?
鹿城大厦某种商品平均每天可销售30件,每件盈利36元,为了尽快减少库存,商场决定采取适当的降价措施,经调查发现,每件商品每降价1元,商场平均每天可多售出3件,设每件商品降价x元.据此规律,请回答:
(1)商场日销售量增加 件,每件商品盈利 元(用含x的代数式表示);
(2)上述条件不变、销售正常情况下,每件商品降价多少元时,商场日盈利达到1440元?
已知直线AB:y=kx﹣2(k≠0)与反比例函数的图象相交于点A和点B(﹣4,2),直线l的解析式为:y=x+b.
(1)求反比例函数和直线AB的解析式;
(2)若直线l恰好与反比例函数的图象仅仅交于一个点,求直线l的解析式;
(3)在(2)的条件下,如图,若直线l与反比例函数的图象交于第四象限的点C,求△ABC的面积.