二次根式在实数范围内有意义,则a的取值范围是( )
A. a≥1 B. a≤1 C. a>1 D. a<1
已知,矩形OABC在平面直角坐标系内的位置如图所示,点O为坐标原点,点A的坐标示为(10,0),点B的坐标为(10,8) .
(1)直接写出点C的坐标为:C( ____ ,_____);
(2)已知直线AC与双曲线y= (m≠0)在第一象限内有一点交点Q为(5,n),
①求m及n的值;
②若动点P从A点出发,沿折线AO→OC→CB的路径以每秒2个单位长度的速度运动,到达B处停止,△APQ的面积为S,当t取何值时,S=10.
如图,正方形ABCD的边长为,点P为对角线BD上一动点,点E在射线BC上,
(1)填空:BD=______;
(2)若BE=t,连结PE、PC,求PE+PC的最小值(用含t的代数式表示);
(3)若点E是直线AP与射线BC的交点,当△PCE为等腰三角形时,求∠PEC的度数.
如图,在平面直角坐标系中,直线y=2x+b(b<0)与坐标轴交于A,B两点,与双曲线(x>0)交于D点,过点D作DC⊥x轴,垂足为G,连接OD.已知△AOB≌△ACD.
(1)如果b=﹣2,求k的值;
(2)试探究k与b的数量关系,并写出直线OD的解析式.
如图,D是△ABC的边AB上一点,CE∥AB,DE交AC于点F,若FA=FC.
(1)求证:四边形ADCE是平行四边形;
(2)若AE⊥EC,EF=EC=1,求四边形ADCE的面积.
某中学举行“校园好声音”歌手大赛,初、高中部根据初赛成绩,各选出 名选手组成初中代表队和高中代表队参加学校决赛.每个队 名选手的决赛成绩如图所示:
填表:
| 平均数(分) | 中位数(分) | 众数(分) |
初中代表队 |
| ||
高中代表队 |
|
结合两队决赛成绩的平均数和中位数,分析哪个代表队的成绩较好;
计算两队决赛成绩的方差,并判断哪个代表队的成绩较为稳定.