满分5 > 初中数学试题 >

如图1,在矩形ABCD中,P为CD边上一点(DP<CP),∠APB=90°.将△...

如图1,在矩形ABCD中,PCD边上一点(DP<CP),APB=90°.将ADP沿AP翻折得到AD′P,PD′的延长线交边AB于点M,过点BBNMPDC于点N.

(1)求证:AD2=DP•PC;

(2)请判断四边形PMBN的形状,并说明理由;

(3)如图2,连接AC,分别交PM,PB于点E,F.若=,求的值.

 

(1)证明见解析;(2)四边形PMBN是菱形,理由见解析;(3) 【解析】(1)过点P作PG⊥AB于点G,易知四边形DPGA,四边形PCBG是矩形,所以AD=PG,DP=AG,GB=PC,易证△APG∽△PBG,所以PG2=AG•GB,即AD2=DP•PC; (2)DP∥AB,所以∠DPA=∠PAM,由题意可知:∠DPA=∠APM,所以∠PAM=∠APM,由于∠APB-∠PAM=∠APB-∠APM,即∠ABP=∠MPB,从而可知PM=MB=AM,又易证四边形PMBN是平行四边形,所以四边形PMBN是菱形; (3)由于,可设DP=k,AD=2k,由(1)可知:AG=DP=k,PG=AD=2k,从而求出GB=PC=4k,AB=AG+GB=5k,由于CP∥AB,从而可证△PCF∽△BAF,△PCE∽△MAE,从而可得,,从而可求出EF=AF-AE=AC-AC=AC,从而可得. (1)过点P作PG⊥AB于点G, ∴易知四边形DPGA,四边形PCBG是矩形, ∴AD=PG,DP=AG,GB=PC ∵∠APB=90°, ∴∠APG+∠GPB=∠GPB+∠PBG=90°, ∴∠APG=∠PBG, ∴△APG∽△PBG, ∴, ∴PG2=AG•GB, 即AD2=DP•PC; (2)∵DP∥AB, ∴∠DPA=∠PAM, 由题意可知:∠DPA=∠APM, ∴∠PAM=∠APM, ∵∠APB-∠PAM=∠APB-∠APM, 即∠ABP=∠MPB ∴AM=PM,PM=MB, ∴PM=MB, 又易证四边形PMBN是平行四边形, ∴四边形PMBN是菱形; (3)由于, 可设DP=k,AD=2k, 由(1)可知:AG=DP=k,PG=AD=2k, ∵PG2=AG•GB, ∴4k2=k•GB, ∴GB=PC=4k, AB=AG+GB=5k, ∵CP∥AB, ∴△PCF∽△BAF, ∴, ∴, 又易证:△PCE∽△MAE,AM=AB=, ∴ ∴, ∴EF=AF-AE=AC-AC=AC, ∴.
复制答案
考点分析:
相关试题推荐

如图,抛物线y=ax2+bx过点B(1,﹣3),对称轴是直线x=2,且抛物线与x轴的正半轴交于点A.

(1)求抛物线的解析式,并根据图象直接写出当y≤0时,自变量x的取值范图;

(2)在第二象限内的抛物线上有一点P,当PABA时,求PAB的面积.

 

查看答案

如图,AB是⊙O的直径,ED切⊙O于点C,AD交⊙O于点F,AC平分∠BAD,连接BF.

(1)求证:ADED;

(2)若CD=4,AF=2,求⊙O的半径.

 

查看答案

(列方程(组)及不等式解应用题)

水是人类生命之源.为了鼓励居民节约用水,相关部门实行居民生活用水阶梯式计量水价政策.若居民每户每月用水量不超过10立方米,每立方米按现行居民生活用水水价收费(现行居民生活用水水价=基本水价+污水处理费);若每户每月用水量超过10立方米,则超过部分每立方米在基本水价基础上加价100%,每立方米污水处理费不变.甲用户4月份用水8立方米,缴水费27.6元;乙用户4月份用水12立方米,缴水费46.3元.(注:污水处理的立方数=实际生活用水的立方数)

(1)求每立方米的基本水价和每立方米的污水处理费各是多少元?

(2)如果某用户7月份生活用水水费计划不超过64元,该用户7月份最多可用水多少立方米?

 

查看答案

小婷在放学路上,看到隧道上方有一块宣传中国﹣南亚博览会的竖直标语牌CD.她在A点测得标语牌顶端D处的仰角为42°,测得隧道底端B处的俯角为30°(B,C,D在同一条直线上),AB=10m,隧道高6.5m(即BC=65m),求标语牌CD的长(结果保留小数点后一位).(参考数据:sin42°≈0.67,cos42°≈0.74,tan42°≈0.90,≈1.73)

 

查看答案

为了促进足球进校园活动的开展,某市举行了中学生足球比赛活动现从A,B,C三支获胜足球队中,随机抽取两支球队分别到两所边远地区学校进行交流.

(1)请用列表或画树状图的方法(只选择其中一种),表示出抽到的两支球队的所有可能结果;

(2)求出抽到B队和C队参加交流活动的概率.

 

查看答案
试题属性

Copyright @ 2008-2019 满分5 学习网 ManFen5.COM. All Rights Reserved.