满分5 > 初中数学试题 >

已知:⊙O是正方形ABCD的外接圆,点E在上,连接BE、DE,点F在上连接BF、...

已知:⊙O是正方形ABCD的外接圆,点E上,连接BE、DE,点F上连接BF、DF,BFDE、DA分别交于点G、点H,且DA平分∠EDF.

(1)如图1,求证:∠CBE=DHG;

(2)如图2,在线段AH上取一点N(点N不与点A、点H重合),连接BNDE于点L,过点HHKBNDE于点K,过点EEPBN,垂足为点P,当BP=HF时,求证:BE=HK;

(3)如图3,在(2)的条件下,当3HF=2DF时,延长EP交⊙O于点R,连接BR,若BER的面积与DHK的面积的差为,求线段BR的长.

 

(1)证明见解析;(2)证明见解析;(3). 【解析】(1)由正方形的四个角都为直角,得到两个角为直角,再利用同弧所对的圆周角相等及角平分线定义,等量代换即可得证; (2)如图2,过H作HM⊥KD,垂足为点M,根据题意确定出△BEP≌△HKM,利用全等三角形对应边相等即可得证; (3)根据3HF=2DF,设出HF=2a,DF=3a,由角平分线定义得到一对角相等,进而得到正切值相等,表示出DM=3a,利用正方形的性质得到△BED≌△DFB,得到BE=DF=3a,过H作HS⊥BD,垂足为S,根据△BER的面积与△DHK的面积的差为,求出a的值,即可确定出BR的长. (1)证明:如图1, ∵四边形ABCD是正方形, ∴∠A=∠ABC=90°, ∵∠F=∠A=90°, ∴∠F=∠ABC, ∵DA平分∠EDF, ∴∠ADE=∠ADF, ∵∠ABE=∠ADE, ∴∠ABE=∠ADF, ∵∠CBE=∠ABC+∠ABE,∠DHG=∠F+∠ADF, ∴∠CBE=∠DHG; (2)如图2,过H作HM⊥KD,垂足为点M, ∵∠F=90°, ∴HF⊥FD, ∵DA平分∠EDF, ∴HM=FH, ∵FH=BP, ∴HN=BP, ∵KH∥BN, ∴∠DKH=∠DLN, ∴∠ELP=∠DLN, ∴∠DKH=∠ELP, ∵∠BED=∠A=90°, ∴∠BEP+∠LEP=90°, ∵EP⊥BN, ∴∠BPE=∠EPL=90°, ∴∠LEP+∠ELP=90°, ∴∠BEP=∠ELP=∠DKH, ∵HM⊥KD, ∴∠KMH=∠BPE=90°, ∴△BEP≌△HKM, ∴BE=HK; (3)【解析】 如图3,连接BD, ∵3HF=2DF,BP=FH, ∴设HF=2a,DF=3a, ∴BP=FH=2a, 由(2)得:HM=BP,∠HMD=90°, ∵∠F=∠A=90°, ∴tan∠HDM=tan∠FDH, ∴, ∴DM=3a, ∵四边形ABCD为正方形, ∴AB=AD, ∴∠ABD=∠ADB=45°, ∵∠ABF=∠ADF=∠ADE,∠DBF=45°-∠ABF,∠BDE=45°-∠ADE, ∴∠DBF=∠BDE, ∵∠BED=∠F,BD=BD, ∴△BED≌△DFB, ∴BE=FD=3a, 过H作HS⊥BD,垂足为S, ∵tan∠ABH=tan∠ADE=, ∴设AB=3m,AH=2m, ∴BD=AB=6m,DH=AD-AH=m, ∵sin∠ADB=, ∴HS=m, ∴DS==m, ∴BS=BD-DS=5m, ∴tan∠BDE=tan∠DBF=, ∵∠BDE=∠BRE,∴tan∠BRE=, ∵BP=FH=2a, ∴RP=10a, 在ER上截取ET=DK,连接BT,由(2)得:∠BEP=∠HKD, ∴△BET≌△HKD, ∴∠BTE=∠KDH, ∴tan∠BTE=tan∠KDH, ∴,即PT=3a, ∴TR=RP-PT=7a, ∵S△BER-S△DHK=, ∴BP•ER-HM•DK=, ∴BP•(ER-DK)=BP•(ER-ET)=, ∴×2a×7a=, 解得:a=(负值舍去), ∴BP=1,PR=5, 则BR=.
复制答案
考点分析:
相关试题推荐

春平中学要为学校科技活动小组提供实验器材,计划购买A型、B型两种型号的放大镜.若购买8A型放大镜和5B型放大镜需用220元;若购买4A型放大镜和6B型放大镜需用152元.

(1)求每个A型放大镜和每个B型放大镜各多少元;

(2)春平中学决定购买A型放大镜和B型放大镜共75个,总费用不超过1180元,那么最多可以购买多少个A型放大镜?

 

查看答案

已知:在四边形ABCD中,对角线AC、BD相交于点E,且ACBD,作BFCD,垂足为点F,BFAC交于点C,BGE=ADE.

(1)如图1,求证:AD=CD;

(2)如图2,BHABE的中线,若AE=2DE,DE=EG,在不添加任何辅助线的情况下,请直接写出图2中四个三角形,使写出的每个三角形的面积都等于ADE面积的2倍.

 

查看答案

为使中华传统文化教育更具有实效性,军宁中学开展以我最喜爱的传统文化种类为主题的调查活动,围绕在诗词、国画、对联、书法、戏曲五种传统文化中,你最喜爱哪一种?(必选且只选一种)的问题,在全校范围内随机抽取部分学生进行问卷调查,将调查结果整理后绘制成如图所示的不完整的统计图,请你根据图中提供的信息回答下列问题:

(1)本次调查共抽取了多少名学生?

(2)通过计算补全条形统计图;

(3)若军宁中学共有960名学生,请你估计该中学最喜爱国画的学生有多少名?

 

查看答案

如图,方格纸中每个小正方形的边长均为1,线段AB的两个端点均在小正方形的顶点上.

(1)在图中画出以线段AB为一边的矩形ABCD(不是正方形),且点C和点D均在小正方形的顶点上;

(2)在图中画出以线段AB为一腰,底边长为2的等腰三角形ABE,点E在小正方形的顶点上,连接CE,请直接写出线段CE的长.

 

查看答案

先化简,再求代数式(1﹣)÷的值,其中a=4cos30°+3tan45°.

 

查看答案
试题属性

Copyright @ 2008-2019 满分5 学习网 ManFen5.COM. All Rights Reserved.