满分5 > 初中数学试题 >

已知:在四边形ABCD中,对角线AC、BD相交于点E,且AC⊥BD,作BF⊥CD...

已知:在四边形ABCD中,对角线AC、BD相交于点E,且ACBD,作BFCD,垂足为点F,BFAC交于点C,BGE=ADE.

(1)如图1,求证:AD=CD;

(2)如图2,BHABE的中线,若AE=2DE,DE=EG,在不添加任何辅助线的情况下,请直接写出图2中四个三角形,使写出的每个三角形的面积都等于ADE面积的2倍.

 

(1)证明见解析;(2)△ACD、△ABE、△BCE、△BHG. 【解析】(1)由AC⊥BD、BF⊥CD知∠ADE+∠DAE=∠CGF+∠GCF,根据∠BGE=∠ADE=∠CGF得出∠DAE=∠GCF即可得; (2)设DE=a,先得出AE=2DE=2a、EG=DE=a、AH=HE=a、CE=AE=2a,据此知S△ADC=2a2=2S△ADE,证△ADE≌△BGE得BE=AE=2a,再分别求出S△ABE、S△ACE、S△BHG,从而得出答案. (1)∵∠BGE=∠ADE,∠BGE=∠CGF, ∴∠ADE=∠CGF, ∵AC⊥BD、BF⊥CD, ∴∠ADE+∠DAE=∠CGF+∠GCF, ∴∠DAE=∠GCF, ∴AD=CD; (2)设DE=a, 则AE=2DE=2a,EG=DE=a, ∴S△ADE=AE×DE=×2a×a=a2, ∵BH是△ABE的中线, ∴AH=HE=a, ∵AD=CD、AC⊥BD, ∴CE=AE=2a, 则S△ADC=AC•DE=•(2a+2a)•a=2a2=2S△ADE; 在△ADE和△BGE中, ∵, ∴△ADE≌△BGE(ASA), ∴BE=AE=2a, ∴S△ABE=AE•BE=•(2a)•2a=2a2, S△ACE=CE•BE=•(2a)•2a=2a2, S△BHG=HG•BE=•(a+a)•2a=2a2, 综上,面积等于△ADE面积的2倍的三角形有△ACD、△ABE、△BCE、△BHG.
复制答案
考点分析:
相关试题推荐

为使中华传统文化教育更具有实效性,军宁中学开展以我最喜爱的传统文化种类为主题的调查活动,围绕在诗词、国画、对联、书法、戏曲五种传统文化中,你最喜爱哪一种?(必选且只选一种)的问题,在全校范围内随机抽取部分学生进行问卷调查,将调查结果整理后绘制成如图所示的不完整的统计图,请你根据图中提供的信息回答下列问题:

(1)本次调查共抽取了多少名学生?

(2)通过计算补全条形统计图;

(3)若军宁中学共有960名学生,请你估计该中学最喜爱国画的学生有多少名?

 

查看答案

如图,方格纸中每个小正方形的边长均为1,线段AB的两个端点均在小正方形的顶点上.

(1)在图中画出以线段AB为一边的矩形ABCD(不是正方形),且点C和点D均在小正方形的顶点上;

(2)在图中画出以线段AB为一腰,底边长为2的等腰三角形ABE,点E在小正方形的顶点上,连接CE,请直接写出线段CE的长.

 

查看答案

先化简,再求代数式(1﹣)÷的值,其中a=4cos30°+3tan45°.

 

查看答案

如图,在平行四边形ABCD中,对角线AC、BD相交于点O,AB=OB,点E、点F分别是OA、OD的中点,连接EF,CEF=45°,EMBC于点M,EMBD于点N,FN=,则线段BC的长为_____

 

查看答案

ABC中,AB=AC,BAC=100°,点DBC边上,连接AD,若ABD为直角三角形,则∠ADC的度数为_____

 

查看答案
试题属性

Copyright @ 2008-2019 满分5 学习网 ManFen5.COM. All Rights Reserved.