满分5 > 初中数学试题 >

如图①,在△ABC中,∠BAC=90°,AB=AC,点E在AC上(且不与点A,C...

如图,在△ABC中,∠BAC=90°AB=AC,点EAC上(且不与点AC重合),在△ABC的外部作△CED,使∠CED=90°DE=CE,连接AD,分别以ABAD为邻边作平行四边形ABFD,连接AF

1)请直接写出线段AFAE的数量关系    

2)将△CED绕点C逆时针旋转,当点E在线段BC上时,如图,连接AE,请判断线段AFAE的数量关系,并证明你的结论;

3)在图的基础上,将△CED绕点C继续逆时针旋转,请判断(2)问中的结论是否发生变化?若不变,结合图写出证明过程;若变化,请说明理由.

 

(1)AF=AE;(2)AF=AE,证明详见解析;(3)结论不变,AF=AE,理由详见解析. 【解析】 试题(1)如图①中,结论:AF=AE,只要证明△AEF是等腰直角三角形即可.(2)如图②中,结论:AF=AE,连接EF,DF交BC于K,先证明△EKF≌△EDA再证明△AEF是等腰直角三角形即可.(3)如图③中,结论不变,AF=AE,连接EF,延长FD交AC于K,先证明△EDF≌△ECA,再证明△AEF是等腰直角三角形即可. 试题解析:(1)如图①中,结论:AF=AE. 理由:∵四边形ABFD是平行四边形, ∴AB=DF, ∵AB=AC, ∴AC=DF, ∵DE=EC, ∴AE=EF, ∵∠DEC=∠AEF=90°, ∴△AEF是等腰直角三角形, ∴AF=AE. (2)如图②中,结论:AF=AE. 理由:连接EF,DF交BC于K. ∵四边形ABFD是平行四边形, ∴AB∥DF, ∴∠DKE=∠ABC=45°, ∴EKF=180°﹣∠DKE=135°, ∵∠ADE=180°﹣∠EDC=180°﹣45°=135°, ∴∠EKF=∠ADE, ∵∠DKC=∠C, ∴DK=DC, ∵DF=AB=AC, ∴KF=AD, 在△EKF和△EDA中, , ∴△EKF≌△EDA, ∴EF=EA,∠KEF=∠AED, ∴∠FEA=∠BED=90°, ∴△AEF是等腰直角三角形, ∴AF=AE. (3)如图③中,结论不变,AF=AE. 理由:连接EF,延长FD交AC于K. ∵∠EDF=180°﹣∠KDC﹣∠EDC=135°﹣∠KDC, ∠ACE=(90°﹣∠KDC)+∠DCE=135°﹣∠KDC, ∴∠EDF=∠ACE, ∵DF=AB,AB=AC, ∴DF=AC 在△EDF和△ECA中, , ∴△EDF≌△ECA, ∴EF=EA,∠FED=∠AEC, ∴∠FEA=∠DEC=90°, ∴△AEF是等腰直角三角形, ∴AF=AE.
复制答案
考点分析:
相关试题推荐

模型介绍:古希腊有一个著名的“将军饮马问题”,大致内容如下:古希腊一位将军,每天都要巡查河岸侧的两个军营A、B,他总是先去A营,再到河边饮马,之后再去B营,如图①,他时常想,怎么走才能使每天的路程之和最短呢?

大数学家海伦曾用轴对称的方法巧妙的解决了这问题.

      

如图②,作B关于直线l的对称点B′,连接AB′与直线l交于点C,点C就是所求的位置.

请你在下列的阅读、应用的过程中,完成解答.

(1)理由:如图③,在直线l上另取任一点C′,连接AC′,BC′,B′C′,

∵直线l是点B,B′的对称轴,点C,C′在l上,

∴CB=_______,C′B=_______.

∴AC+CB=AC+CB′=_______

在△AC′B′中,∵AB′<AC′+C′B′,∴AC+CB<AC′+C′B′,即AC+CB最小.

归纳小结:

本问题实际是利用轴对称变换的思想,把A、B在直线的同侧问题转化为在直线的两侧,从而可利用“两点之间线段最短”,即转化为“三角形两边之和大于第三边”的问题加以解决(其中C为AB′与l的交点,即A、C、B′三点共线).

本问题可拓展为“求定直线上一动点与直线外两定点的距离和的最小值”问题的数学模型.

(2)模型应用

如图 ④,正方形ABCD的边长为2,E为AB的中点,F是AC上一动点,求EF+FB的最小值.

解决这个问题,可以借助上面的模型,由正方形的对称性可知,B与D关于直线AC对称,连接ED交AC于F,则EF+FB的最小值就是线段DE的长度,EF+FB的最小值是_______

     

如图⑤,已知⊙O的直径CD为4,∠AOD的度数为60°,点B是弧AD的中点,在直径CD上找一点P,使BP+AP的值最小,则BP+AP的最小值是_______

如图⑥,一次函数y=-2x+4的图象与x,y轴分别交于A,B两点,点O为坐标原点,点C与点D分别为线段OA,AB的中点,点P为OB上一动点,求PC+PD的最小值,并写出取得最小值时P点坐标.

 

查看答案

(本题满分7分)小明到服装店参加社会实践活动,服装店经理让小明帮助解决以下问题:

服装店准备购进甲乙两种服装,甲种每件进价80元,售价120元;乙种每件进价60元,售价90元.计划购进两种服装共100件,其中甲种服装不少于65件。

1)若购进这100件服装的费用不得超过7500,则甲种服装最多购进多少件?

2)在(1)的条件下,该服装店对甲种服装以每件优惠a0a20)元的价格进行优惠促销活动,乙种服装价格不变,那么该服装店应如何调整进货方案才能获得最大利润?

 

查看答案

如图,点A(-2,n),B(1,-2)是一次函数y=kx+b的图象和反比例函数的图象的两个交点.

(1)求反比例函数和一次函数的解析式;

(2)若C是x轴上一动点,设t=CB-CA,求t的最大值,并求出此时点C的坐标.

 

查看答案

如图,⊙O的弦AD∥BC,过点D的切线交BC的延长线于点E,AC∥DE交BD于点H,DO及其延长线分别交AC,BC于点G,F.

(1)求证:DF垂直平分AC;

(2)若弦AD=10,AC=16,求⊙O的半径.

 

 

查看答案

如图,利用热气球探测器测量大楼AB的高度从热气球P处测得大楼顶部B的俯角为37°,大楼底部A的俯角为60°,此时热气球P离地面的高度为120m试求大楼AB的高度精确到01m).(参考数据:sin37°≈060,cos37°≈080,tan37°≈075,≈173

 

 

查看答案
试题属性

Copyright @ 2008-2019 满分5 学习网 ManFen5.COM. All Rights Reserved.