满分5 > 初中数学试题 >

(本题满分7分)小明到服装店参加社会实践活动,服装店经理让小明帮助解决以下问题:...

(本题满分7分)小明到服装店参加社会实践活动,服装店经理让小明帮助解决以下问题:

服装店准备购进甲乙两种服装,甲种每件进价80元,售价120元;乙种每件进价60元,售价90元.计划购进两种服装共100件,其中甲种服装不少于65件。

1)若购进这100件服装的费用不得超过7500,则甲种服装最多购进多少件?

2)在(1)的条件下,该服装店对甲种服装以每件优惠a0a20)元的价格进行优惠促销活动,乙种服装价格不变,那么该服装店应如何调整进货方案才能获得最大利润?

 

(1)75件(2)当x=65时,w有最大值,则购进甲种服装65件,乙种服装35件 【解析】 试题(1)根据题意设购进甲种服装x件,可知购进甲需80x元,则乙为60(100-x)元,再根据二者之和不超过7500元,可列不等式,求解集可得结果; (2)根据要求设总利润为w元,因为甲种服装不少于65件,所以65≤x≤75,因此甲的利润为(120-80-a)元,乙的利润为(90-60-a)元,因此可得w=(10-a)x+3000,然后分情况讨论设计方案,①当0<a<10时,由一次函数的性质可判断当x=65时,利润最大;②当a=10时,w=3000,二者一样;③当10<a<20时,根据一次函数的性质可判断,当x=75时,利润最大. 试题解析:【解析】 (1)设购进甲种服装x件,由题意可知: 80x+60(100-x)≤7500 解得:x≤75 答:甲种服装最多购进75件. (2)设总利润为w元,因为甲种服装不少于65件,所以65≤x≤75 W=(40-a)x+30(100-x)=(10-a)x+3000 方案1:当0<a<10时,10-a>0,w随x的增大而增大 所以当x=75时,w有最大值,则购进甲种服装75件,乙种服装25件; 方案2:当a=10时,所有方案获利相同,所以按哪种方案进货都可以; 方案3:当10<a<20时,10-a<0,w随x的增大而减小 所以当x=65时,w有最大值,则购进甲种服装65件,乙种服装35件。
复制答案
考点分析:
相关试题推荐

如图,点A(-2,n),B(1,-2)是一次函数y=kx+b的图象和反比例函数的图象的两个交点.

(1)求反比例函数和一次函数的解析式;

(2)若C是x轴上一动点,设t=CB-CA,求t的最大值,并求出此时点C的坐标.

 

查看答案

如图,⊙O的弦AD∥BC,过点D的切线交BC的延长线于点E,AC∥DE交BD于点H,DO及其延长线分别交AC,BC于点G,F.

(1)求证:DF垂直平分AC;

(2)若弦AD=10,AC=16,求⊙O的半径.

 

 

查看答案

如图,利用热气球探测器测量大楼AB的高度从热气球P处测得大楼顶部B的俯角为37°,大楼底部A的俯角为60°,此时热气球P离地面的高度为120m试求大楼AB的高度精确到01m).(参考数据:sin37°≈060,cos37°≈080,tan37°≈075,≈173

 

 

查看答案

青少年视力水平下降已引起全社会的广泛关注,为了解某市初中毕业年级5 000名学生的视力情况,我们从中抽取了一部分学生的视力作为样本进行数据处理,得到如下的不完整的频数分布表和频数分布直方图:

   

请根据以上图表信息回答下列问题:

(1)在频数分布表中,a=________,b=________

(2)补全条形统计图;

(3)若视力在4.6以上(含4.6)均属正常,根据上述信息估计全区初中毕业生中视力正常的学生有多少?

 

查看答案

ABC 中,D BC 边的中点,E、F 分别在 AD 及其延长线上,CEBF,连接BE、CF.

(1)求证:BDF ≌△CDE;

(2)若 DE =BC,试判断四边形 BFCE 是怎样的四边形,并证明你的结论.

 

查看答案
试题属性

Copyright @ 2008-2019 满分5 学习网 ManFen5.COM. All Rights Reserved.